FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_COMPRESSIBLEEULER3 2D Steady reflected shock problem.
[ FEA, OUT ] = EX_COMPRESSIBLEEULER3( VARARGIN ) Sets up and solves a steady reflected compressible Euler shock problem and compares with the analytical solution.
[1] H. W. Liepmann, A. Roshko, Elements of Gas Dynamics, Courier Corporation, 2013.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- lev scalar {2} Grid refinement level sfun string {sflag1} Shape function solver string openfoam/su2/{} Use OpenFOAM, SU2, or default solver iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'lev', 2; 'sfun', 'sflag1'; 'solver', ''; 'iplot', 1; 'tol', 0.15; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; fea.sdim = { 'x', 'y' }; fea.geom.objects = { gobj_rectangle(0,4.1,0,1) }; lev = ceil(opt.lev); fea.grid = rectgrid(lev*41,lev*10,[0,4.1;0,1]); fea.grid = quad2tri(fea.grid,1); ML = 2.9; rL = 1; uL = 2.9; vL = 0; pL = 0.714286; th1 = 29*pi/180; MT = 2.3781; rT = 1.7; uT = 2.619334; vT = -0.5063; pT = 1.52819; th2 = 23*pi/180; MR = 1.94253; rR = 2.6872838; uR = 2.401499; vR = 0; pR = 2.93398; s = '%g-((1-y)>x*%g)*(%g-%g)*(x<%g)-(x>=%g)*(y<(x-%g)*%g)*(%g-%g)'; rref = sprintf( s, rT, atan(th1), rT, rL, 1/atan(th1), 1/atan(th1), 1/atan(th1), atan(th2), rT, rR ); uref = sprintf( s, uT, atan(th1), uT, uL, 1/atan(th1), 1/atan(th1), 1/atan(th1), atan(th2), uT, uR ); vref = sprintf( s, vT, atan(th1), vT, vL, 1/atan(th1), 1/atan(th1), 1/atan(th1), atan(th2), vT, vR ); pref = sprintf( s, pT, atan(th1), pT, pL, 1/atan(th1), 1/atan(th1), 1/atan(th1), atan(th2), pT, pR ); fea = addphys(fea,@compressibleeuler); fea.phys.ee.prop.artstab.id_coef = 2*fea.phys.ee.prop.artstab.id_coef; fea.phys.ee.prop.artstab.sd_coef = 2*fea.phys.ee.prop.artstab.sd_coef; init0 = { rL, uL, vL, pL }; fea.phys.ee.eqn.coef{5,end}{1} = rL; fea.phys.ee.eqn.coef{6,end}{1} = uL; fea.phys.ee.eqn.coef{7,end}{1} = vL; fea.phys.ee.eqn.coef{8,end}{1} = pL; fea.phys.ee.bdr.sel(2) = 2; fea.phys.ee.bdr.sel(3:4) = 1; fea.phys.ee.bdr.coef{1,end}{1,3} = rT; fea.phys.ee.bdr.coef{1,end}{2,3} = uT; fea.phys.ee.bdr.coef{1,end}{3,3} = vT; fea.phys.ee.bdr.coef{1,end}{4,3} = pT; fea.phys.ee.bdr.coef{1,end}{1,4} = rL; fea.phys.ee.bdr.coef{1,end}{2,4} = uL; fea.phys.ee.bdr.coef{1,end}{3,4} = vL; fea.phys.ee.bdr.coef{1,end}{4,4} = pL; fea = parsephys(fea); fea = parseprob(fea); if( strcmp(opt.solver,'openfoam') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = openfoam( fea, 'deltaT', 0.01, 'endTime', 4, 'maxCo', 0.2, 'fid', fid, 'logfid', logfid ); fid = logfid; elseif( strcmp(opt.solver,'su2') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = su2( fea, 'fid', fid, 'logfid', logfid ); fid = logfid; else fea.sol.u = solvestat( fea, 'init', init0, 'fid', fid ); end % Postprocessing. s_Ma = fea.phys.ee.eqn.vars{end-1,2}; if( opt.iplot>0 ) postplot( fea, 'surfexpr', s_Ma ) title(fea.phys.ee.eqn.vars{end-1,1}) end % Error checking. r = evalexprp( fea.dvar{1}, fea ); u = evalexprp( fea.dvar{2}, fea ); v = evalexprp( fea.dvar{3}, fea ); p = evalexprp( fea.dvar{4}, fea ); r_ref = evalexprp( rref, fea ); u_ref = evalexprp( uref, fea ); v_ref = evalexprp( vref, fea ); p_ref = evalexprp( pref, fea ); out.err = [ sum(abs(r_ref-r))/size(fea.grid.p,2), ... sum(abs(u_ref-u))/size(fea.grid.p,2), ... sum(abs(v_ref-v))/size(fea.grid.p,2), ... sum(abs(p_ref-p))/size(fea.grid.p,2) ]; out.pass = all(out.err<opt.tol); if( nargout==0 ) clear fea out end