FEATool Multiphysics  v1.16.6 Finite Element Analysis Toolbox
ex_convreact1.m File Reference

## Description

EX_CONVREACT1 1D Time dependent convection-reaction equation example.

[ FEA, OUT ] = EX_CONVREACT1( VARARGIN ) 1D time dependent convection equation with reaction on a line with exact solutions. Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
k           scalar {1e-1}          Reaction coefficient
a           scalar {1}             Convection velocity
hmax        scalar {1/25}          Max grid cell size
dt          scalar {0.1}           Time step size
ischeme     scalar {3}             Time stepping scheme
sfun        string {sflag1}        Shape function
iplot       scalar 0/{1}           Plot solution (=1)
.
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct


# Code listing

 cOptDef = { ...
'k',       -1; ...
'a',        1; ...
'hmax',     1/25; ...
'dt'        0.1; ...
'ischeme'   3; ...
'sfun',     'sflag1'; ...
'iplot',    1; ...
'tol',      1e-2; ...
'fid',      1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid       = opt.fid;

tmax   = 1;
refsol = ['exp(',num2str(opt.k),'*t)*sin(x-',num2str(opt.a),'*t)'];

% Grid generation.
fea.grid = linegrid( 1/opt.hmax, 0, 1 );

% Problem definition.
fea.sdim  = { 'x' };
fea = addphys( fea, @convectiondiffusion );
fea.phys.cd.sfun = { opt.sfun };
fea.phys.cd.eqn.coef{2,4} = { 0 };
fea.phys.cd.eqn.coef{3,4} = { opt.a };
fea.phys.cd.eqn.coef{4,4} = { [num2str(opt.k),'*c'] };
fea = parsephys(fea);

% Parse and solve problem.
x = fea.grid.p';
n = length(x);
if( strcmp( opt.sfun,'sflag2' ) )
x = [ x; (x(2:end)+x(1:end-1))/2 ];
end
t   = 0;
u0  = eval( refsol );
fea = parseprob( fea );
if( opt.ischeme>0 )

fea.bdr.d{1} = refsol;
fea.bdr.d{2} = refsol;
fea.bdr.n    = cell(1,2);
[fea.sol.u,tlist] = solvetime( fea, 'fid', fid, 'init', u0, 'ischeme', opt.ischeme, 'tstep', opt.dt, 'tmax', tmax, 'nstbwe', 0, 'tstop', 0, 'imass', 2 );

else

fea.sol.u = u0;
[M,A] = assembleprob( fea, 'f_m', 1, 'imass', 2, 'f_a', 1, 'f_sparse', 1 );
M = spdiags( full(sum(M')'), 0, size(M,1), size(M,1) );
dt = opt.dt;
it = 0;
tlist = 0;
if( opt.ischeme==-1 )       % Crank-Nicolson.
C = [ M + dt/2*A ];
elseif( opt.ischeme==-2 )   % Backward Euler.
C = [ M + dt*A ];
end
C(1,:) = 0;
C(1,1) = 1;
C(n,:) = 0;
C(n,n) = 1;
fea_it = fea;
while 1
t  = t  + dt;
it = it + 1;

fea_it.sol.u = u0;
[~,~,f0] = assembleprob( fea_it, 'f_f', 1 );

u_r = eval( refsol );
dnm = inf;
while( dnm>1e-6 )
[~,~,f1] = assembleprob( fea_it, 'f_f', 1 );

if( opt.ischeme==-1 )       % Crank-Nicolson.
b = [ [ M - dt/2*A ]*u0 + dt/2*f1 + dt/2*f0 ];
elseif( opt.ischeme==-2 )   % Backward Euler.
b = [ M*u0 + dt*f1 ];
end
b(1) = u_r(1);
b(n) = u_r(n);

dnm = fea_it.sol.u;
u1  = C\b;
dnm = norm( dnm - u1 );
fea_it.sol.u = u1;

end

if( t>=tmax )
break
end

err = norm( u1 - u_r )/norm( u_r );
errnm(it) = err;
if( ~isempty(fid) )
fprintf( fid, 'Time = %f, error norm = %d\n', t, err );
end

fea.sol.u = [ fea.sol.u u1 ];
tlist = [ tlist t ];
u0 = u1;
end

end

% Postprocessing.
if( opt.iplot>0 )
figure;
if( opt.iplot>1 )
i_sol_list = 1:numel(tlist);
else
i_sol_list = numel(tlist);
end
[~,ix] = sort( x );
for i_sol=i_sol_list
t = tlist(i_sol);
clf
postplot( fea, 'surfexpr', 'c', 'solnum', i_sol );
hold on
u_r = eval( refsol );
plot( sort(x), u_r(ix), 'r--' );
title( ['Solution at time ',num2str(t)])
xlabel( 'x' )
end
end

% Error checking.
for i_sol=1:numel(tlist)
u_i = fea.sol.u(:,i_sol);
t   = tlist(i_sol);
u_r = eval( refsol );
errnm(i_sol) = norm( u_i - u_r )/norm( u_r );
end
out.err  = errnm;
out.pass = all( errnm<opt.tol );

if ( nargout==0 )
clear fea out
end