FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER2 1D Stationary heat transfer with radiation.
[ FEA, OUT ] = EX_HEATTRANSFER2( VARARGIN ) NAFEMS T2 benchmark example for heat transfer with radiation [1]. The left end of a 0.1 m rod is held at a temperature of 1000 K while the right end is radiating with an emissivity, em = 0.98, and Stefan-Bolzmann constant, sigma = 5.67e-8 Wm^2/K^4.
+---------- L=0.1m ----------+ T(0.1)? T=1000K q_n = em*sigma*(T_amb^4-T^4)
The rod is made of iron with density 7850 kg/m^3, heat capacity 460 J/kgK, and thermal conductivity 55.563 W/mK. The steady state temperature at the left end is sought when the surrounding ambient temperature is 300 K.
[1] The Standard NAFEMS Benchmarks, The National Agency for Finite Element Standards, UK, 1990.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.02} Grid cell size sfun string {sflag1} Finite element shape function solver string fenics/{} Use FEniCS or default solver istat scalar {1}/0 Use stationary (=1), or time dependent solver iplot scalar {1}/0 Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.02; 'sfun', 'sflag1'; 'solver', ''; 'istat', 1; 'iplot', 1; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); % Grid generation. L = 0.1; nx = round(L/opt.hmax); fea.grid = linegrid( nx, 0, L ); % Problem definition. fea.sdim = { 'x' }; % Space coordinate name. fea = addphys( fea, @heattransfer ); % Add heat transfer physics mode. fea.phys.ht.sfun = { opt.sfun }; % Set shape function. % Equation coefficients. fea.phys.ht.eqn.coef{1,end} = 7850; % Density fea.phys.ht.eqn.coef{2,end} = 460; % Heat capacity. fea.phys.ht.eqn.coef{3,end} = 55.563; % Thermal conductivity. fea.phys.ht.eqn.coef{6,end} = { 1000 }; % Initial temperature. % Boundary conditions. fea.phys.ht.bdr.sel = [ 1 4 ]; fea.phys.ht.bdr.coef{1,end} = { 1000 [] }; fea.phys.ht.bdr.coef{4,end}{2}{4} = '0.98*5.67e-8'; fea.phys.ht.bdr.coef{4,end}{2}{5} = 300; % Parse physics modes and problem struct. fea = parsephys(fea); fea = parseprob(fea); % Compute solution. if( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', opt.fid, ... 'tstep', 10, 'tmax', 1000, 'ischeme', 2*(~opt.istat) ); else if( opt.istat ) fea.sol.u = solvestat( fea, 'fid', opt.fid, 'init', {'T0_ht'} ); else [fea.sol.u, tlist] = solvetime( fea, 'fid', opt.fid, 'init', {'T0_ht'}, ... 'tmax', 1000, 'tstep', 10 ); end end % Postprocessing. if( opt.iplot>0 ) postplot( fea, 'surfexpr', 'T', 'axequal', 0 ) title('Temperature') xlabel('x') ylabel('T') end % Error checking. T_sol = evalexpr( 'T', 0.1, fea ); T_ref = 926.97; out.err = abs(T_sol-T_ref)/T_ref; out.pass = out.err<6e-4; if( nargout==0 ) clear fea out end