FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER3 1D Transient heat conduction.
[ FEA, OUT ] = EX_HEATTRANSFER3( VARARGIN ) NAFEMS T3 benchmark example for one-dimensional transient heat conduction [1]. A 10 cm thick steel plate is assumed to have one surface exposed to a varying temperature, T = 100*sin(pi*t/40), while the temperature at the other side is fixed, T = 0. This problem can be seen as one dimensional along the axis aligned with the thickness.
+---T(0.02)?---- L=0.02m ------------+ T=100*sin(pi*t/40) T=0
The temperature at x = 0.02 m is sought at time t = 36. The material parameters of the plate are, density 7200 kg/m^3, heat capacity 440.5 J/kgK, and thermal conductivity 35 W/mK.
[1] The Standard NAFEMS Benchmarks, The National Agency for Finite Element Standards, UK, 1990.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.005} Grid cell size sfun string {sflag1} Finite element shape function solver string fenics/{} Use FEniCS or default solver iplot scalar {1}/0 Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.005; 'sfun', 'sflag1'; 'solver', ''; 'iplot', 1; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); % Grid generation. L = 0.1; nx = round(L/opt.hmax); fea.grid = linegrid( nx, 0, L ); % Problem definition. fea.sdim = { 'x' }; % Space coordinate name. fea = addphys( fea, @heattransfer ); % Add heat transfer physics mode. fea.phys.ht.sfun = { opt.sfun }; % Set shape function. % Equation coefficients. fea.phys.ht.eqn.coef{1,end} = 7200; % Density fea.phys.ht.eqn.coef{2,end} = 440.5; % Heat capacity. fea.phys.ht.eqn.coef{3,end} = 35; % Thermal conductivity. % Boundary conditions. fea.phys.ht.bdr.sel = [ 1 1 ]; fea.phys.ht.bdr.coef{1,end} = { '100*sin(pi*t/40)' 0 }; % Parse physics modes and problem struct. fea = parsephys(fea); fea = parseprob(fea); % Compute solution. if( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', opt.fid, ... 'tstep', 0.05, 'tmax', 32, 'ischeme', 2 ); tlist = fea.sol.t; else [fea.sol.u, tlist] = solvetime( fea, 'fid', opt.fid, 'tmax', 32, 'tstep', 0.05 ); end % Postprocessing. if( opt.iplot>0 ) figure subplot(1,2,1) postplot( fea, 'surfexpr', 'T', 'axequal', 'off' ) title('Temperature distribution at time t = 32 s') xlabel('x') ylabel('T') subplot(1,2,2) for isol=1:numel(tlist) T(isol) = evalexpr( 'T', 0.02, fea, isol ); end plot(tlist,T) title('Temperature at x = 0.02 m') xlabel('time') ylabel('T') end % Error checking. T_sol = evalexpr( 'T', 0.02, fea ); T_ref = 36.6; out.err = abs(T_sol-T_ref)/T_ref; out.pass = out.err<1e-2; if( nargout==0 ) clear fea out end