FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_HEATTRANSFER6 2D axisymmetric heat conduction.
[ FEA, OUT ] = EX_HEATTRANSFER6( VARARGIN ) NAFEMS benchmark example for heating of a solid cylider with an internal hole.
_ T=T_amb ^ +---------+ | q_n=0 | | | : | 0.14m q_n=5e5 | | T=T_amb | : | | q_n=0 | | v +---------+ T=T_amb r=0.02 |<-0.08m->|
The geometry can be considered axisymmetric and the solid has a thermal conductivity of 52 W/mC, the middle part of the inside of the cylider is heated by 5e5 W/mK. The steady temperature at the point (0.04,0.04) is sought when the surrounding ambient temperature is T_amb = 0 C.
[1] Cameron AD, Casey JA, Simpson GB. Benchmark Tests for Thermal Analysis, The National Agency for Finite Element Standards, UK, 1986.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- hmax scalar {0.005} Grid cell size sfun string {sflag1} Finite element shape function solver string fenics/{} Use FEniCS or default solver iplot scalar {1}/0 Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'hmax', 0.005; 'sfun', 'sflag1'; 'solver', ''; 'iplot', 1; 'tol', 1e-2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); % Geometry definition. gobj = gobj_polygon( [ 0.02 0.1 0.1 0.02 0.02 0.02 ; 0 0 0.14 0.14 0.1 0.04 ]' ); fea.geom.objects = { gobj }; % Grid generation. fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', opt.fid ); % Problem definition. fea.sdim = { 'r', 'z' }; % Space coordinate name. fea = addphys( fea, @heattransfer ); % Add heat transfer physics mode. fea.phys.ht.sfun = { opt.sfun }; % Set shape function. % Equation coefficients. fea.phys.ht.eqn.seqn = '- r*k_ht*(Tr_r + Tz_z) = 0'; fea.phys.ht.eqn.coef{3,end} = 52; % Thermal conductivity. fea.phys.ht.eqn.coef{7,end} = { 273.15 }; % Initial temperature. % Boundary conditions. fea.phys.ht.bdr.sel = [1 1 1 3 4 3]; fea.phys.ht.bdr.coef{1,end} = { 273.15 273.15 273.15 [] [] [] }; fea.phys.ht.bdr.coef{4,end}{5}{1} = 'r*5e5'; % Parse physics modes and problem struct. fea = parsephys(fea); fea = parseprob(fea); % Compute solution. if( strcmp(opt.solver,'fenics') ) fea = fenics( fea, 'fid', opt.fid ); else fea.sol.u = solvestat( fea, 'fid', opt.fid, 'init', {'T0_ht'} ); end % Postprocessing. if( opt.iplot>0 ) postplot( fea, 'surfexpr', 'T', 'isoexpr', 'T' ) title('Temperature, T') end % Error checking. T_sol = evalexpr( 'T', [0.04;0.04], fea ); T_ref = 332.97; out.err = abs(T_sol-T_ref)/T_ref; out.pass = out.err<opt.tol; if( nargout==0 ) clear fea out end