FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_LINEARELASTICITY4 Stress calculation of an I-beam attached to two brackets.
[ FEA, OUT ] = EX_LINEARELASTICITY4( VARARGIN ) Example to calculate displacements and stresses for an I-beam suppored by two brackets with circular holes.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- E scalar {200e9} Modulus of elasticity nu scalar {0.3} Poissons ratio force scalar {1e5} Load force l scalar {0.4} Length of I-beam ilev scalar {2} Grid regfinement level sfun string {sflag1} Shape function for displacements iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'E', 200e9; ... 'nu', 0.3; ... 'force', 1e5; ... 'l', 0.4; ... 'ilev', 2; ... 'sfun', 'sflag1'; ... 'iplot', 1; ... 'tol', 0.42; ... 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry definition. fea.sdim = { 'x' 'y' 'z' }; % Coordinate names. % Grid generation. fea.grid = get_grid( opt.ilev ); % Problem definition. fea = addphys(fea,@linearelasticity); fea.phys.el.eqn.coef{1,end} = { opt.nu }; fea.phys.el.eqn.coef{2,end} = { opt.E }; fea.phys.el.sfun = { opt.sfun opt.sfun opt.sfun }; % Boundary conditions. dtol = sqrt(eps); fixbdr = findbdr( fea, ['(sqrt(x.^2+z.^2)<=0.03+sqrt(eps))&(z>=-sqrt(eps))'] ); forcebdr = findbdr( fea, ['abs(y)>=0.2-sqrt(eps)'] ); % Fix boundaries (set zero Dirichlet BCs). n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. bctype = num2cell( zeros(3,n_bdr) ); % First set homogenous Neumann BCs everywhere. [bctype{:,fixbdr}] = deal( 1 ); % Set Dirchlet BCs for right boundary. fea.phys.el.bdr.coef{1,5} = bctype; % Apply negative z-load to left boundary. bccoef = num2cell( zeros(3,n_bdr) ); [bccoef{3,forcebdr}] = deal(-opt.force); fea.phys.el.bdr.coef{1,end} = bccoef; % Parse and solve problem. fea = parsephys( fea ); fea = parseprob( fea ); fea.sol.u = solvestat( fea, 'fid', fid ); % Postprocessing. if ( opt.iplot>0 ) DSCALE = 5000; subplot(1,2,1) postplot( fea, 'surfexpr', 'sqrt(u^2+v^2+w^2)', 'linestyle', 'none' ) title( 'Total displacement' ) view([30 20]) subplot(1,2,2) dp = zeros(size(fea.grid.p)); for i=1:3 dp(i,:) = DSCALE*evalexpr( fea.dvar{i}, fea.grid.p, fea ); end fea_disp.grid = fea.grid; fea_disp.grid.p = fea_disp.grid.p + dp; plotgrid( fea_disp ) title(['Displacement plot (at ',num2str(DSCALE),' times scale)']) view([30 20]) end % Error check. disp_max_ref = 6.204e-6; xdisp = fea.sol.u(fea.eqn.dofm{1}(:)); ydisp = fea.sol.u(fea.eqn.dofm{2}(:)+fea.eqn.ndof(1)); zdisp = fea.sol.u(fea.eqn.dofm{3}(:)+sum(fea.eqn.ndof(1:2))); disp = sqrt(xdisp.^2+ydisp.^2+zdisp.^2); disp_max = max(disp); svm_max_ref = 4.410e6; svm = evalexpr( fea.phys.el.eqn.vars{1,2}, fea.grid.p, fea ); svm_max = max(svm); out.disp_max = disp_max; out.svm_max = svm_max; out.err(1) = abs(disp_max - disp_max_ref)/abs(disp_max_ref); out.err(2) = abs(svm_max - svm_max_ref)/abs(svm_max_ref); out.pass = all(out.err<opt.tol); if ( nargout==0 ) clear fea out end %