FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_LINEARELASTICITY5 Vibration of a square plate.
[ FEA, OUT ] = EX_LINEARELASTICITY5( VARARGIN ) Vibration of a square plate (NAFEMS FV52 Benchmark).
[1] National Agency for Finite Element Methods and Standards. The Standard NAFEMS Benchmarks. Rev. 3. United Kingdom: NAFEMS, October 1990.
Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- igrid scalar 0/{1} Cell type (>0=hexahedral, <0=tetrahedral) sfun string {sflag1} Shape function iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'igrid', 2; 'sfun', 'sflag1'; 'iplot', 1; 'tol', 0.02; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; E = 200e9; nu = 0.3; rho = 8000; % Geometry definition. fea.sdim = {'x' 'y' 'z'}; gobj = gobj_block( 0, 10, 0, 10, -0.5, 0.5, 'B1' ); fea.geom.objects = { gobj }; fea.grid = blockgrid(abs(opt.igrid)*10,abs(opt.igrid)*10,abs(opt.igrid),[0,10;0,10;-0.5,0.5]); if( opt.igrid<0 ) fea.grid = hex2tet( fea.grid ); end % Equations and problem definition. fea = addphys( fea, @linearelasticity ); fea.phys.el.eqn.coef{1,end} = { nu }; fea.phys.el.eqn.coef{2,end} = { E }; fea.phys.el.eqn.coef{3,end} = { rho }; fea.phys.el.sfun = { opt.sfun, opt.sfun, opt.sfun }; % Set/constrain w = 0 on lower edges (z = -0.5). edg = []; [be,e,ev] = gridbdre( fea.grid.b, fea.grid.c ); n_bdre = max(be(end,:)); for i_bdre=1:n_bdre ix = be(end,:) == i_bdre; ie = be(4,ix); iv = unique([ev(ie,1);ev(ie,2)]); pz = fea.grid.p(3,iv); if( all( pz <= -0.5+sqrt(eps)) ) edg_i.type = 'constraint'; edg_i.index = i_bdre; edg_i.dvar = 3; edg_i.expr = 0; edg = [ edg, edg_i ]; end end fea.edg = edg; % Solve problem. fea = parsephys( fea ); fea = parseprob( fea ); [fea.sol.u,fea.sol.l] = solveeig( fea, 'neigs', 10, 'fid', fid ); % Postprocessing. if( opt.iplot>0 ) postplot( fea, 'surfexpr', 'sqrt(u^2+v^2+w^2)', 'solnum', 4 ) end out = []; f = sqrt(max(0,fea.sol.l))/(2*pi); f_ref = [0;0;0;45.897;109.44;109.44;167.89;193.59;206.19;206.19]; out.err = norm(f_ref-f)/norm(f_ref); out.pass = out.err < opt.tol; if( nargout==0 ) clear fea out end