FEATool Multiphysics  v1.16.6
Finite Element Analysis Toolbox
ex_linearelasticity5.m File Reference

Description

EX_LINEARELASTICITY5 Vibration of a square plate.

[ FEA, OUT ] = EX_LINEARELASTICITY5( VARARGIN ) Vibration of a square plate (NAFEMS FV52 Benchmark).

Reference

[1] National Agency for Finite Element Methods and Standards. The Standard NAFEMS Benchmarks. Rev. 3. United Kingdom: NAFEMS, October 1990.

Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
igrid       scalar 0/{1}           Cell type (>0=hexahedral, <0=tetrahedral)
sfun        string {sflag1}        Shape function
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

Code listing

 cOptDef = { 'igrid',    2;
             'sfun',     'sflag1';
             'iplot',    1;
             'tol',      0.02;
             'fid',      1 };
 [got,opt] = parseopt(cOptDef,varargin{:});
 fid       = opt.fid;


 E   = 200e9;
 nu  = 0.3;
 rho = 8000;


% Geometry definition.
 fea.sdim = {'x' 'y' 'z'};
 gobj = gobj_block( 0, 10, 0, 10, -0.5, 0.5, 'B1' );
 fea.geom.objects = { gobj };


 fea.grid = blockgrid(abs(opt.igrid)*10,abs(opt.igrid)*10,abs(opt.igrid),[0,10;0,10;-0.5,0.5]);
 if( opt.igrid<0 )
   fea.grid = hex2tet( fea.grid );
 end


% Equations and problem definition.
 fea = addphys( fea, @linearelasticity );
 fea.phys.el.eqn.coef{1,end} = { nu  };
 fea.phys.el.eqn.coef{2,end} = { E   };
 fea.phys.el.eqn.coef{3,end} = { rho };
 fea.phys.el.sfun            = { opt.sfun, opt.sfun, opt.sfun };


% Set/constrain w = 0 on lower edges (z = -0.5).
 edg = [];
 [be,e,ev] = gridbdre( fea.grid.b, fea.grid.c );
 n_bdre = max(be(end,:));
 for i_bdre=1:n_bdre
   ix = be(end,:) == i_bdre;
   ie = be(4,ix);
   iv = unique([ev(ie,1);ev(ie,2)]);
   pz = fea.grid.p(3,iv);
   if( all( pz <= -0.5+sqrt(eps)) )
     edg_i.type  = 'constraint';
     edg_i.index = i_bdre;
     edg_i.dvar  = 3;
     edg_i.expr  = 0;

     edg = [ edg, edg_i ];
   end
 end
 fea.edg = edg;


% Solve problem.
 fea = parsephys( fea );
 fea = parseprob( fea );

 [fea.sol.u,fea.sol.l] = solveeig( fea, 'neigs', 10, 'fid', fid );


% Postprocessing.
 if( opt.iplot>0 )
   postplot( fea, 'surfexpr', 'sqrt(u^2+v^2+w^2)', 'solnum', 4 )
 end


 out = [];
 f = sqrt(max(0,fea.sol.l))/(2*pi);
 f_ref = [0;0;0;45.897;109.44;109.44;167.89;193.59;206.19;206.19];
 out.err  = norm(f_ref-f)/norm(f_ref);
 out.pass = out.err < opt.tol;


 if( nargout==0 )
   clear fea out
 end