FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_NAVIERSTOKES7 3D Example for incompressible stationary flow in a curved pipe.
[ FEA, OUT ] = EX_NAVIERSTOKES7( VARARGIN ) Sets up and solves stationary flow in a curved circular channel. The inflow profile is constant and the outflow should assume an offset parabolic profile. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- rho scalar {1} Density miu scalar {0.001} Molecular/dynamic viscosity umax scalar {0.3} Maximum magnitude of inlet velocity h scalar {0.5} Channel radius l scalar {2.5} Channel length ilev scalar {1} Grid refinement level sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure solver string openfoam/su2/{} Use OpenFOAM, SU2 or default solver iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'rho', 1; 'miu', 1e-3; 'umax', 0.3; 'h', 0.5; 'l', 0.5; 'ilev', 1; 'sf_u', 'sflag2'; 'sf_p', 'sflag1'; 'solver', ''; 'iplot', 1; 'tol', 0.2; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Grid generation. fea.sdim = { 'x' 'y' 'z' }; % Coordinate names. fea.grid = gridrevolve( circgrid( 4*opt.ilev, 3*opt.ilev, opt.h/2 ), 15*opt.ilev, opt.l, 1/4 ); % Problem definition. fea = addphys( fea, @navierstokes ); fea.phys.ns.eqn.coef{1,end} = { opt.rho }; fea.phys.ns.eqn.coef{2,end} = { opt.miu }; fea.phys.ns.sfun = { opt.sf_u opt.sf_u opt.sf_u opt.sf_p }; if( any(strcmp(opt.solver,{'openfoam','su2'})) ) [fea.phys.ns.sfun{:}] = deal('sflag1'); end % Boundary conditions. fea.phys.ns.bdr.sel(5) = 2; fea.phys.ns.bdr.sel(6) = 4; fea.phys.ns.bdr.coef{2,end}{2,5} = -opt.umax; % Parse and solve problem. fea = parsephys(fea); fea = parseprob(fea); if( strcmp(opt.solver,'openfoam') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = openfoam( fea, 'fid', fid, 'logfid', logfid ); fid = logfid; elseif( strcmp(opt.solver,'su2') ) logfid = fid; if( ~got.fid ), fid = []; end fea.sol.u = su2( fea, 'fid', fid, 'logfid', logfid ); fid = logfid; else jac.form = { [1;1] [1;1] [1;1] []; [1;1] [1;1] [1;1] []; [1;1] [1;1] [1;1] []; [] [] [] [] }; jac.coef = { 'rho_ns*ux' 'rho_ns*uy' 'rho_ns*uz' []; 'rho_ns*vx' 'rho_ns*vy' 'rho_ns*vz' []; 'rho_ns*wx' 'rho_ns*wy' 'rho_ns*wz' []; [] [] [] [] }; fea.sol.u = solvestat( fea, 'fid', fid, 'nsolve', 2, 'jac', jac ); end % Postprocessing. if( opt.iplot>0 ) postplot( fea, 'surfexpr', 'sqrt(u^2+v^2+w^2)' ) view( 130, 30 ) end % Error checking. out.flow_in = pi*(opt.h/2)^2*opt.umax; out.flow_out = intbdr( 'sqrt(u^2+v^2+w^2)', fea, 5 ); out.rerr = abs(out.flow_out-out.flow_in)/out.flow_in; out.pass = out.rerr < opt.tol; if ( nargout==0 ) clear fea out end