FEATool Multiphysics
v1.17.0
Finite Element Analysis Toolbox
|
EX_NONNEWTONIAN1 2D Example for non-Newtonian flow in a channel.
[ FEA, OUT ] = EX_NONNEWTONIAN1( VARARGIN ) Sets up and solves stationary non-Newtonian flow in a rectangular channel. The fluid is governed by a power-law model such that the viscosity can be expressed as mu_eff = mu0*K*D^(n-1). A constant pressure drop is prescribed resulting in an analytical solution for the velocity u(y) = n/(n+1)*(1/(mu0*K)*dp)^(1/n)*((h/2)^((n+1)/n)-abs(h/2-y)^((n+1)/n)). Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- rho scalar {1} Density mu0 scalar {1.29684} Newtonian viscosity dp scalar {1} Pressure drop n scalar {0.25} Power-law exponent K scalar {1} Power-law constant h scalar {1} Channel height l scalar {0.2} Channel length igrid scalar 1/{0} Cell type (0=quadrilaterals, 1=triangles) hmax scalar {0.1} Max grid cell size sf_u string {sflag1} Shape function for velocity sf_p string {sflag1} Shape function for pressure iplot scalar 0/{1} Plot solution and error (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'rho', 1; 'mu0', 1.29684; 'K', 1; 'n' , 0.25; 'dp' , 1; 'h', 1; 'l', 2; 'igrid', 1; 'hmax', 0.05; 'sf_u', 'sflag2'; 'sf_p', 'sflag1'; 'iplot', 1; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % Geometry and grid parameters. h = opt.h; % Height of rectangular domain. l = opt.l; % Length of rectangular domain. % Discretization parameters. sf_u = opt.sf_u; % FEM shape function type for velocity. sf_p = opt.sf_p; % FEM shape function type for pressure. % Geometry definition. gobj = gobj_rectangle( 0, l, 0, h ); fea.geom.objects = { gobj }; fea.sdim = { 'x' 'y' }; % Coordinate names. % Grid generation. if ( opt.igrid==1 ) fea.grid = gridgen(fea,'hmax',opt.hmax,'fid',fid); else fea.grid = rectgrid(round(l/opt.hmax),round(h/opt.hmax),[0 l;0 h]); if( opt.igrid<0 ) fea.grid = quad2tri( fea.grid ); end end n_bdr = max(fea.grid.b(3,:)); % Number of boundaries. % Boundary conditions. dtol = opt.hmax; i_inflow = findbdr( fea, ['x<',num2str(dtol)] ); % Inflow boundary number. i_outflow = findbdr( fea, ['x>',num2str(l-dtol)] ); % Outflow boundary number. % Problem definition. fea = addphys(fea,@nonnewtonian); % Add non-Newtonian flow physics mode. fea.phys.nn.eqn.coef{1,end} = { opt.rho }; fea.phys.nn.eqn.coef{2,end} = { 1 }; % Select power-law viscosity model. fea.phys.nn.eqn.coef{4,end} = { opt.mu0 }; fea.phys.nn.eqn.coef{6,end} = { opt.K }; fea.phys.nn.eqn.coef{7,end} = { opt.n }; fea.phys.nn.eqn.coef{13,end}{1} = [num2str(opt.dp),'*(1-x/',num2str(l),')']; % Initial pressure. fea.phys.nn.sfun = { sf_u sf_u sf_p }; % Set shape functions. fea.phys.nn.bdr.sel([i_inflow,i_outflow]) = 4; fea.phys.nn.bdr.coef{4,end}{3,i_inflow} = l/opt.dp; % Set inflow pressure. % Parse and solve problem. fea = parsephys(fea); % Check and parse physics mode. fea = parseprob(fea); % Check and parse problem struct. [fea.bdr.n{1}{[i_inflow,i_outflow]}] = deal( '-p*nx' ); % Offset natural Neumann BC. [fea.bdr.d{2}{[i_inflow,i_outflow]}] = deal(0); % Set v=0 at inlet and outlet. fea.sol.u = solvestat( fea, 'relchg', false, 'fid', fid, 'maxnit', 50 ); % Call to stationary solver. % Postprocessing. s_velm = 'sqrt(u^2+v^2)'; s_refsol = [num2str(opt.n/(opt.n+1)*(1/(opt.mu0*opt.K)*opt.dp)^(1/opt.n)),'*(',num2str((h/2)^((opt.n+1)/opt.n)),'-abs(',num2str(h/2),'-y)^',num2str((opt.n+1)/opt.n),')']; p = [ l/2*ones(1,25); linspace(0,h,25) ]; u = evalexpr( s_velm, p, fea ); u_ref = evalexpr( s_refsol, p, fea ); s_velm = 'sqrt(u^2+v^2)'; if ( opt.iplot>0 ) figure subplot(3,1,1) postplot(fea,'surfexpr',s_velm,'evaltype','exact') title('Velocity field') subplot(3,1,2) postplot(fea,'surfexpr','miu_nn') title('Effective viscosity') subplot(3,1,3) plot( u, p(2,:) ) hold on plot( u_ref, p(2,:), 'k.' ) legend( 'Computed solution', 'Reference solution','Location','West') title( 'Velocity profile at x=l/2' ) ylabel( 'y' ) end % Error checking. err = sqrt(sum((u-u_ref).^2)/sum(u_ref.^2)); if( ~isempty(fid) ) fprintf(fid,'\nL2 Error: %f\n',err) fprintf(fid,'\n\n') end out.err = err; out.pass = err<0.05; if ( nargout==0 ) clear fea out end