FEATool Multiphysics
v1.17.0
Finite Element Analysis Toolbox
|
EX_RESISTIVE_HEATING2 Resistive heating in a conducting plate.
[ FEA, OUT ] = EX_RESISTIVE_HEATING2( VARARGIN ) Nonlinear heating in a conductive plate with a time periodic current and temperature dependent resistivity. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- ischeme scalar 1{2} Time stepping scheme (1=BE, 2=CN) sfun string {sflag1} Shape function iplot scalar 0/{1} Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { 'ischeme', 2; 'sfun', 'sflag1'; 'iplot', 1; 'tol', [0.03, 0.07, 0.01]; 'fid', 1 }; [got,opt] = parseopt(cOptDef,varargin{:}); fid = opt.fid; % 2D geometry. p = [-0.05 -0.025; 0 -0.025; 0 -0.005; 0.05 -0.005; 0.05 0.005; 0 0.005; 0 0.025; -0.05 0.025; -0.05 0.015; -0.01 0.015; -0.01 0.005; -0.05 0.005; -0.05 -0.005; -0.01 -0.005; -0.01 -0.015; -0.05 -0.015]; geom.objects{1} = gobj_polygon(p); % 2D to 3D extrusion. geom = geom_extrude_face(geom, 'P1', 1, 1e-3, [0,0,1]); fea.sdim = {'x', 'y', 'z'}; fea.geom.objects = geom.objects(2); % Mesh generation. fea.grid = gridgen(fea, 'hmax', 0.0025, 'fid', fid); % Physics mode for electric potential. fea = addphys(fea, @conductivemediadc); fea.phys.dc.sfun = {opt.sfun}; fea.phys.dc.eqn.coef{2,end} = {'s_coef*(1+0.0044*(T-20))'}; % Conductivity. % Boundary conditions (time dependent input). fea.phys.dc.bdr.sel(4) = 1; fea.phys.dc.bdr.coef{2,end}{8} = '100/(0.01*0.001)*sin(2*pi*1*t+(10)/180*pi)'; fea.phys.dc.bdr.coef{2,end}{12} = '100/(0.01*0.001)*sin(2*pi*1*t+(10-120)/180*pi)'; fea.phys.dc.bdr.coef{2,end}{16} = '100/(0.01*0.001)*sin(2*pi*1*t+(10-240)/180*pi)'; % Heat transfer physics mode fea = addphys(fea, @heattransfer); fea.phys.ht.sfun = {opt.sfun}; fea.phys.ht.eqn.coef{1,end} = {'rho_coef'}; fea.phys.ht.eqn.coef{2,end} = {'c_coef'}; fea.phys.ht.eqn.coef{3,end} = {'k_coef'}; fea.phys.ht.eqn.coef{7,end} = {'P'}; fea.phys.ht.bdr.sel(:) = 3; fea.phys.ht.bdr.sel(4) = 1; % Constants and expressions. fea.expr = {'s_coef', '1/1.58e-8'; 'rho_coef', '8900'; 'c_coef', '385/10'; 'k_coef', '391'; 'P', '(Vx^2+Vy^2+Vz^2)/(1.58e-8*(1+0.0044*(T-20)))'}; fea = parsephys(fea); fea = parseprob(fea); [fea.sol.u,fea.sol.t] = solvetime(fea, 'dt', 0.3, 'tmax', 20, ... 'maxnit', 5, 'ischeme', opt.ischeme, ... 'fid', fid); % Postprocessing. if( opt.iplot>0 ) subplot(2,1,1) postplot( fea, 'surfexpr', 'V' ) title( 'Electric potential, V') subplot(2,1,2) postplot( fea, 'surfexpr', 'T' ) title( 'Temperature, T') end % Error checking. [Vmin,Vmax] = minmaxsubd('V', fea); [Tmin,Tmax] = minmaxsubd('T', fea); ref = [-6.684e-3, 6.446e-3, 19.233]; out.err = abs(ref - [Vmin,Vmax,Tmax])./abs(ref); out.pass = all(out.err <= opt.tol) & abs(Tmin)<1e-6;