|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_SWIRL_FLOW4 2D Rotating swirling flow around a disk.
[ FEA, OUT ] = EX_SWIRL_FLOW4( VARARGIN ) Axisymmetric swirling flow around a rotating disk immersed in a container.
Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
sf_u string {sflag1} Shape function for velocity
sf_p string {sflag1} Shape function for pressure
iplot scalar 0/{1} Plot solution (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { 'sf_u', 'sflag1';
'sf_p', 'sflag1';
'iphys', 1;
'iplot', 1;
'tol', 0.01;
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid = opt.fid;
% Geometry and grid generation.
fea.sdim = {'r' 'z'};
fea.geom.objects = { gobj_polygon([0 0;.03 0;.03 .05;.002 .05;.002 .02;.008 .018;.0085 .013;0 .013]) };
hmax = 2e-3;
fea.grid = gridgen( fea, 'hmax', hmax, 'fid', fid );
% Equation definition.
if ( opt.iphys==1 )
fea = addphys(fea,@swirlflow);
fea.phys.sw.eqn.coef{1,end} = { 1.2e3 };
fea.phys.sw.eqn.coef{2,end} = { 2.3e-3 };
fea.phys.sw.sfun = [ repmat( {opt.sf_u}, 1, 3 ) {opt.sf_p} ];
fea.phys.sw.bdr.sel = [1 1 3 2 2 2 2 5];
[fea.phys.sw.bdr.coef{2,end}{2,4:7}] = deal('r*pi/6');
fea = parsephys(fea);
else
opt.sf_u = 'sflag2';
opt.sf_p = 'sflag1';
fea.dvar = { 'u', 'v', 'w', 'p' };
fea.sfun = [ repmat( {opt.sf_u}, 1, 3 ) {opt.sf_p} ];
c_eqn = { 'r*rho*u'' - r*miu*(2*ur_r + uz_z + wr_z) + r*rho*(u*ur_t + w*uz_t) + r*p_r = r*Fr - 2*miu/r*u_t + p_t + rho*v*v_t';
'r*rho*v'' - r*miu*( vr_r + vz_z) + miu*v_r + r*rho*(u*vr_t + w*vz_t) + rho*u*v_t = r*Fth + miu*(v_r - 1/r*v_t)';
'r*rho*w'' - r*miu*( wr_r + uz_r + 2*wz_z) + r*rho*(u*wr_t + w*wz_t) + r*p_z = r*Fz';
'r*ur_t + r*wz_t + u_t = 0' };
fea.eqn = parseeqn( c_eqn, fea.dvar, fea.sdim );
fea.coef = { 'rho', 1.2e3 ;
'miu', 2.3e-3 ;
'Fr', 0 ;
'Fth', 0 ;
'Fz', 0 };
% Boundary conditions.
n_bdr = max(fea.grid.b(3,:));
fea.bdr.d = cell(4,n_bdr);
[fea.bdr.d{1,[1 2 5:7 8]}] = deal(0);
[fea.bdr.d{3,[1 2 3 4:7]}] = deal(0);
[fea.bdr.d{2,[1 2]}] = deal(0);
[fea.bdr.d{2, 4:7 }] = deal('r*pi/6');
[fea.bdr.d{1:3,3}] = deal([]);
fea.bdr.n = cell(size(fea.bdr.d));
% Fix pressure at p([r,z]=[0.03,0.05]) = 0.
[~,ix_p] = min( sqrt( (fea.grid.p(1,:)-0.03).^2 + (fea.grid.p(2,:)-0.05).^2) );
fea.pnt = struct( 'type', 'constr', ...
'index', ix_p, ...
'dvar', 'p', ...
'expr', '0' );
end
% Parse and solve problem.
fea = parseprob( fea );
fea.sol.u = solvestat( fea, 'fid', fid );
% Postprocessing.
if( opt.iplot )
postplot( fea, 'surfexpr', 'sqrt(u^2+v^2+w^2)', 'isoexpr', 'v', 'isolev', 15, 'isocolor', 'w' )
end
% Error checking.
[~,U_max] = minmaxsubd( 'sqrt(u^2+v^2+w^2)', fea );
out.err = norm( U_max - 4.445e-3 )/4.445e-3;
out.pass = out.err < opt.tol;
if( nargout==0 )
clear fea out
end