## Supersonic Flow Past a Wedge

## Supersonic Flow Past a Wedge

This verification test case studies steady inviscid compressible flow past a wedge at an incident angle of 15 degrees. As the supersonic flow (Ma = 2.5) hits the wedge a sharp oblique shock wave is formed, resulting in a reduced downstream flow velocity. The simulation uses the inviscid compressible Euler equations to …

## Surface Currents in a Circular Wire

## Surface Currents in a Circular Wire

Skin effect is a phenomenon where an alternating current tends to flow and distribute itself along the surface layer or outside skin of a conductor. This effect can for example be taken advantage of in power transmission applications by layering inexpensive conductor materials (for example aluminium) with a thin layer …

## Non-Newtonian Flow in an Extrusion Die

## Non-Newtonian Flow in an Extrusion Die

This example models flow of a polymer through an extrusion die with two outlets. This type of flow can for example be found in manufacturing processes of plastic parts. The polymer is assumed to be non-Newtonian, and can be modeled with a shear thinning Bird-Carreau viscosity model. The die is also assumed to be …

## Temperature Loading of a Tapered Cylinder

## Temperature Loading of a Tapered Cylinder

This validation test case models temperature loading of a tapered hollow thick cylinder with a spherical bottom flange section. The solid object is assumed to be clamped vertically, but allowed to expand horizontally due to a linear temperature gradient. The stress in the z-direction at the bottom inner point is …

## Electro-Osmotic Flow

## Electro-Osmotic Flow

This multiphysics example examines microfluidic flow and coupled mass transport due to electroosmosis in a channel with a T-shaped junction. With application of an electric field in a micro channel a flow effect is induced along the walls due to chemical reactions between the liquid and the wall material. This effect …

## Cooling Effect of Adding Fins

## Cooling Effect of Adding Fins

This example models heated steam at a constant temperature of 120 C flowing through a aluminium pipe with 3 cm diameter. Heat loss to the surrounding cool air (at 25 C and heat transfer coefficient of h = 60 W/m2 C) is computed for a plain pipe, and also a pipe where 200 cooling fins per meter has been added. The …

## Multi-Simulation Heat Exchanger

## Multi-Simulation Heat Exchanger

This tutorial model illustrates how one can couple the OpenFOAM CFD solver with the FEATool Multiphysics FEA solver. In the model a stream of cool air is heated while flowing through a tube and fin heat exchanger. Due to several symmetry planes only a small section of the full heat exchanger geometry actually needs to …