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Abstract—Computational fluid dynamics (CFD) solvers pro-
vide helpful components and amenities for industrial develop-
ment and the advancement of fluid flow simulations. Nevertheless,
CFD solvers are not advantageous since iterative simulations
require high computational resources and enormous memory for
complex calculations. The deep neural network-based CFD data-
driven learning method eliminates these constraints by lowering
the compensation between model complicatedness and precision.
In this paper, we present the feasibility of predicting fluid
flow velocity fields based on CFD using U-Net architecture, a
subdomain of deep learning. The experimental results show that
the U-Net architecture can predict fluid flow with a total loss of
0.2223, a validation loss of 0.2728, and an accuracy of 86% from
our private dataset. Our U-Net model can be used to predict
fluid flows, which has been proven.

Index Terms—CFD, Laminar Flow, Deep Learning, Convolu-
tional Neural Networks, U-Net Architecture

I. INTRODUCTION

Energy use forecasting and thermal performance improve-
ment rely on building energy simulations. Some building
energy modeling systems can thoroughly examine a year’s
mechanical design performance and energy consumption data
for the target system [1]. Calculations are performed us-
ing computational fluid dynamics (CFD) research to show
the physical relations of fluid flow and obstacles inside the
building with covers described by predetermined boundary
constraints. The Navier-Stokes fluid flow equations are an
example of a partial differential equation that can be solved via

*Corresponde: T.-T.-H. Le (lehuong7885@gmail.com) and H. Kim
(howonkim@pusan.ac.kr)

this examination process. This study emphasizes non-uniform
steady laminar flow estimation [2].

In certain circumstances, such as engineering functions, the
high expense of CFD simulations may be justified. For exam-
ple, suppose the Reynolds number (the association between
viscous forces and inertial) is sufficiently low. In that case,
the flow intention is laminar, meaning that the fluid particles
travel along similar layers with no cross-currents oblique to
the flow path, as seen in Figure 1. In addition, the issues
can be solved as a non-uniform steady laminar flow if the
flow achieves a state in which any particular effects, such
as the velocity and pressure fields, change across the region
[14]. Additionally, using numerical resolution approaches, a
trained neural network (NN) can reduce processing costs.
In order to unravel and forecast flow, for instance, using
extensive eddy calculations for Reynolds-averaged Navier-
Stokes (RANS) and simulation, numerous NN models have
been developed [3].

Fig. 1: Sample a non-uniform steady laminar fluid flow for
2D geometry. The white rectangle depicts the obstacle. The
pointers indicate the laminar flow’s velocity field.
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The method used in this paper deploys deep learning
techniques to CFD by directly calculating the necessary fluid
properties. The U-Net model utilized in this study was used to
modify the CNN method, originally employed in biomedical
vision segmentation [4].

There are six primary sections to this paper. Related work is
presented in Section II. The dataset that discusses the signed
distance function (SDF) is explained in Section III. The U-Net
model architecture used in this study is presented in Section IV.
The total loss and validation loss are discussed in Section V,
while the conclusion and future work are discussed in Section
VI.

II. RELATED WORK

Deep learning has been implemented in a number of ways
to build CFD predictions. Masuda et al. [5] have combined
CNN and LSTM, called ConvLSTM. As noise builds up using
the predicted data as input, an unoriginal image, like white,
is finally produced. ConvLSTM can predict using physically
derived physical parameters and pictured images. However,
the experiment was conducted with a small training dataset,
generating a weak model against noise and overfitting. CFD-
CNN was used by Yan et al. [6] to simulate the concentration
field of a rosette buoyancy jet using 20 different Froude
number cases. Convolutional neural networks (CNNs), which
are used for design classification, object distinction, and object
detection, can use a variety of neural networks and learning
methods, and their capacity for generalization is significantly
improved. Comparing CFD-CNN to multigene genetic pro-
gramming, the former can operate at a higher rate and with
more precision. After all, the CFD-CNN experiment needs
more data to enhance and extend the model’s performance.

Long Short-Term Memory (LSTM) model was used by
Mohan et al. [8] and has been shown to have enormous
potential for modeling temporal dynamics of turbulence with
complex sequential data. Although LSTM can deliver precise
prediction, it was observed that when the horizon was ex-
tended, accuracy began to decline. On the other hand, Qui
et al. [9] have implemented BiLSTM in combination with the
CNN model to address the issues with conventional numerical
simulation techniques, which are time and resource-intensive
in the CFD method. Compared to the single-LSTM model,
the BiLSTM model can better consider the influence of each
attribute point before and after attributes.

By using a fusion convolutional neural network (CNN),
Jin et al. [7] propose predicting the velocity field about
a circular cylinder using the pressure field surrounding the
cylinder as input. Fusion CNN consists of the max pooling
layer-implemented paths (i.e., two paths with a pooling layer
and one without a pooling) and the paths without a pooling
layer-implemented paths. This type of architecture can store
exact spatial-temporal data and features resilient to minor
translations in the spatial-temporal series of pressure variations
on the cylinder. The time series of pressure fluctuation on the
cylinder surface is translated into a spatial-temporal topology
resembling a grid to be used as the CNN’s input. However,

the model can only be trained to recognize inherent properties
stored in the data.

To overcome the disadvantages mentioned above, we have
implemented a U-Net model architecture to make CFD pre-
diction, which is fast and more reliable for proceeding with
fewer images than a convolutional neural network (CNN).
The implementation of the Deep Learning model with U-Net
architecture to predict fluid flow indoors based on CFD is
described in this work.

III. DATASET

A. Numerical Data Simulations

This study used numerical simulations to generate training
and testing samples for the network under consideration. These
simulations were carried out using the FEAtool commercial
software application [10] to get input as the sample dataset
shown in Figure 2.

(a) Ux velocity field.

(b) Uy velocity field.

(c) Pressure field.

Fig. 2: Sample images of Ux and Uy for velocity fields and
Pressure fields.

The MATLAB Compiler Runtime (MCR) is necessary for
the m-script programming features used in the FEATool Multi-
physics software toolkit to execute and comprehend the codes.
This study emulated a rectangle-shaped obstacle and a two-
dimensional computational domain.

B. Signed Distance Function (SDF)

The Signed Distance Function (SDF) is the geometry rep-
resentation in this article. A closed geometry shape’s nearest
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boundary can be determined at any location in the grid using
the SDF function. Depending on whether a point is within
(negative) or outside (positive) of the form, the sign of each
number changes [2]. There are 300 instances of each Ux, Uy,
P, Grid, and Boundary data in the train and test datasets used
in this study, with Ux and Uy being the desired results for
velocity fields, and P for pressure fields, respectively. The
sample of the SDF image represents the boundary and grid
depicted in Figure 3.

(a) SDF boundary image.

(b) SDF grid image.

Fig. 3: SDF boundary and grid images.

IV. METHODOLOGY

Figure 4 details the U-Net design architecture. A U-Net de-
sign’s primary framework consists of two tracks, a contracting
track on the left track and an expansive track on the right track
[11].

The contracting path is the initial track, which uses a
conventional CNN design. Each block of the contracting path
consists of a ReLU activation component, a max-pooling layer,
and two consecutive 3 × 3 convolutions. The extended track
contains several variations of this arrangement, each of which
uses 2 × 2 up-convolution to upsample the feature map. The
upsampled feature map is then cropped and joined to the
matching layer’s feature map in the contracting path. The
segmented image is created after the feature map has been
condensed to the required number of channels using an extra
1 × 1 convolution. Because they provide the least amount of
contextual data image, the pixels’ margins must be clipped.

This creates a network with a u-shape appearance and, more
importantly, reproduces contextual data images throughout the
structure, allowing it to segregate things in one area using
context from a broader overlapping region [12].

In this research, each process encompasses two convolu-
tional layers. The image size reduction from 200 × 300 to
196 × 296 results from padding issues, even though this
performance employs padding= ”same,” as indicated by the
green arrow pointing downward in Figure 4. The image will
be enlarged to its full size on the contrasting side along the
expansive route.

An upsampling technique is called transposed convolution.
The skip connections enable the transfer of unprocessed data
from layers on the downsampling path to the upsampling
path (the copy and crop procedures in Figure 3). Convolution
layer output from the downsampling path is incorporated
with features created from the upsampled input to create the
upsampling path [13]. This path can enlarge images, as the
image used in this study, its size extended from 4 × 18 to
17× 30 and then concatenated with a similar image from the
contracting path to create an image with the dimensions of
13×26. The process of U-Net is done following the transposed
convolution until the image is returned to the original size
200 × 300. Here, data from earlier layers are combined to
produce a more precise prediction. This study shows how
well such networks may be utilized to map coupled velocity-
pressure field geometries to steady-state fluid flow solutions,
even though U-Net was first created to segment medical
images [14].

V. RESULTS AND ANALYSIS

In this study, the U-Net method was trained using a dataset
divided into 70% train data and 30% test as the best train-
ing/testing ratio to acquire the best performance of the machine
learning (ML) models [15]. Besides that, the performance of
the training network has been evaluated using the custom
loss function, in which we proceed with the predicted values
respected to the actual values [16]. At every epoch throughout
the training stage, the training result is validated. In this paper,
200 epochs are used, with increasing training epochs, and the
training loss gradually reduces in comparison to the validation
loss [17] and a learning rate of 0.01 is selected based on the
default value, which typically performs for standard multi-
layer neural networks [18].

The Adam optimizer was used because it can achieve the
quickest confluence time throughout the experiment [19]. The
training U-Net technique generated a total loss of 0.2223,
with comprise of loss Ux 0.0110, loss Uy 0.0271, and loss
Pressure 0.0267, and generated a validation loss of 0.2728
with comprise of validation loss Ux 0.0187, validation loss Uy
0.0291, and validation loss Pressure 0.0304, the U-Net model
can represent these modeling processes with small error rates.
It was determined that the tiny batch, which was conducted
with a single batch size utilized in this study, has a regularizing
effect because the noise that small batches add to the updates
helps training in avoiding suboptimal local minima [20].
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Fig. 4: U-Net architecture for CFD prediction with the contracting path on the left side and expansive path on the right side.

The comparison of predicted and targeted data of the Ux
and Uy velocities fields and Pressure components in the field
flow is presented in Figure 5. The U-Net network’s skip-
connections helped our experiment’s good accuracy result of
86%. The skip connections help image reconstructions be
more precise [14]. Using this U-Net technique allows spatial
information to be learned more effectively. When the output
of the appropriate encoded section is added, the upsampling’s
checkerboard distortion is reduced, and the localization infor-
mation is more effectively retrieved [21].

(a) Ux prediction, Ux target, and Ux error results.

(b) Uy prediction, Uy target, and Uy error results.

(c) Pressure prediction, Pressure target, and Pressure error
results.

Fig. 5: Prediction results based on U-Net model architecture.

VI. CONCLUSION

This work uses a U-Net model architecture to show how
field flow prediction based on CFD is implemented. This
model predicts airflow in a two-dimensional environment with
Ux and Uy for velocity and P for pressure fields. The U-Net
approach can predict outcomes with an accuracy of 86%, a
total loss of 0.2223, and a validation loss of 0.2728. Future
studies must investigate the technique to increase accuracy and
reduce loss. Furthermore, by integrating the U-Net model with
another model, such as a long short-term memory (LSTM) or
bidirectional long short-term memory (BiLSTM), we expect to
address the overfitting issue and reduce the loss and validation
loss.
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