
applied  
sciences

Article

Development of Dynamics for Design Procedure of Novel
Grating Tiling Device with Experimental Validation

Qingshun Bai 1 , Mohamed Shehata 1,2,* , Ayman Nada 2 and Zhongxi Shao 1

����������
�������

Citation: Bai, Q.; Shehat, M.; Nada,

A.; Shao, Z. Development of

Dynamics for Design Procedure of

Novel Grating Tiling Device with

Experimental Validation. Appl. Sci.

2021, 11, 11716. https://doi.org/

10.3390/app112411716

Academic Editors: Ji Wang,

Weiqiu Chen and Bin Huang

Received: 25 October 2021

Accepted: 7 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Manufacturing and Automation, School of Mechatronics Engineering, Harbin
Institute of Technology, Harbin 150001, China; qshbai@hit.edu.cn (Q.B.); shaozhongxi78@hit.edu.cn (Z.S.)

2 Mechanical Engineering Department, Benha Faculty of Engineering, Benha University, Benha 13518, Egypt;
ayman.nada@bhit.bu.edu.eg

* Correspondence: mohamed.saleh@stu.hit.edu.cn

Abstract: The article proposes a dynamic for design (DFD) procedure for a novel aperture grating
tiling device using the multibody system (MBS) approach. The grating device is considered as a rigid-
flexible MBS that is built primarily based totally at the load assumptions because of grating movement.
This movement is utilized in many industrial applications, such as the compression of laser pulse,
precision measuring instruments, and optical communication. A new design procedure of tiling
grating device frame is introduced in order to optimize its design parameters and enhance the system
stability. The dynamic loads are estimated based on the Lagrange multipliers that are obtained from
the solution of the MBS model. This model is fully non-linear and moves in the three-dimensional
space, and the relative movement of its bodies is restricted by the description of the constraints
function in the motion manifold. The mechanism of the grating device is structurally analyzed
in keeping with the dynamic conduct and therefore the generated forces. The symbolic manipulation
as well as the computational work of solving the obtained differential-algebraic equations (DAEs)
is carried out using MATLAB Symbolic Toolbox. Once the preliminary design has been attained,
the stress behavior of the grating device is examined using the MATLAB FEATool Multiphysics toolkit,
regarding system stability and design aspects. Moreover, the design was constructed in real life , and
the movement has been verified experimentally, which confirms the effectiveness of the proposed
procedure. In conclusion, the DFD procedure with trade-off optimization is utilized successfully to
design the grating unit for maximum ranges of grating movements.

Keywords: dynamic for design; rigid-flexible systems; grating device; multibody system dynamics;
Euler angles

1. Introduction

The increasing need for high inertia and ultra-precision in optical devices of observa-
tional instruments motivates researchers to develop new design of grating tiling device [1].
The research activities on grating device have newly gained greater attention for industrial
applications as their advantages become better known and undoubtedly documented [2].
The kinematic and dynamic analysis of the grating device are the most paramount parame-
ters used in optimizing the grating device design [3]. The stability of tiling grating device is
one of the most important parameters which need to be achieved. The main factors affect-
ing the stability of grating mechanism are environmental vibration and thermal loading.
Grating device stability can be optimized by structural and control algorithm adjustments
which are composed of capacitive sensors and piezoelectric ceramic (PZT) actuator [4].

In previous works, modelling and design of the grating devices was carried out
using finite element analysis (FEA) [5,6]. However, FEA always comes at the expense of
the increased computational effort and is limited by the computing capabilities. Moreover,
the grating devices exhibit definite rigid body motion as well as elastic deformations
that might be considered relatively small according to the device movement. Thus, it
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was pointed out in reference [7] that the multibody dynamics approach may actually be
the most suitable for modeling the system.

The goal of the DFD procedure is to obtain an efficient design cycle by integrating
the dynamics of interconnected systems, including nonlinearities, vibration analysis and
parameters estimation, with current design methodologies [8,9]. In the last two decades,
MBS became the most effective tool in modeling complex mechanical systems for simu-
lation and system analysis. Many commercial and educational programs have adopted
the MBS approach to develop systematized subroutines to build the dynamic structure of
systems [10].

In contrast to the finite element method, the MBS approach is the best-suited for
modeling dynamic systems that exhibit rigid body motion with definite rotation as well
as small and/or large deformation [11,12]. Three formulations for modeling dynamic
problems associated with flexible multibody system approach are found in literature,
which include the floating frame of reference (FFR) [13], and the structure-preserving
method [14] and the absolute nodal coordinate (ANC) method [15]. In view of the nature of
the movement in the grating system application under study and its motion characteristic
that is associated with limited deformation, the (FFR) formula was used in this work.

In this paper, firstly, the grating system is described, the multibody model is introduced
and the resulting terms of equations of motion are constructed using MATLAB Symbolic
Math Toolbox. Second, the proposed DFD procedure is utilized to optimize the design of
the grating device system. Finally, the designed grating system device is manufactured,
assembled and exploited for experimental validation. The remainder of this study is
organized as follows: Section 2 describes the grating device mechanism as a multibody
system. In Section 3, the system equations of motion are derived and presented, and the
mathematical model is constructed. Section 4 presents the numerical results and discussion
that are followed by the experimental validation in Section 5, and the conclusion is listed
in Section 6.

2. Kinematics of Grating Device as a Multibody System
2.1. Kinematics Grating Device

The grating device can be recognized as a typical parallel mechanism [16]. A floating
mass, called grating mass, is fixed with five piezo actuators in order to move it laterally
and longitudinally and make three independent rotations along perpendicular axes, see
Figure 1. The system consists of fixed base, lower plate, upper plate, grating mass, five
flexure structures and five flexible rods. The mechanism includes two prismatic joints and
one spherical joint. The spatial movement consisted of five degrees of freedom (DOFs)
of macro-micro scale compliant parallel mechanism. Specifically, the five movements
include two translational DOFs along the X and Z axes of the grating frame and with three
rotational degrees about the local axes [17].

Figure 1. Grating device system unit.
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The generalized coordinates of each body consist of three translational and four
rotational coordinates. The complete generalized coordinates vector can be assembled by
embedding vertically the individual coordinates of each body. Defining an arbitrary point
P located on the grating mass, see Figure 2, the global position, r, can be expressed as:

Figure 2. Displacement field of an arbitrary point.

ri
p = Ri + ui

p = Ri + Ai(ūi
r + ūi

f ) (1)

where ri
p = [ri

x, ri
y, ri

z]
T , i = 4, is the global position vector of point P with respect to global

frame which is fixed. Ri = [Ri
x, Ri

y, Ri
z]

T is the global position vector of frame of the grating
mass with respect to global frame, Ai is the transformation matrix between the global
and local frames, such that ui

p = Aiūi
p where ūi

p is the local position vector of P with
respect to the local frame of the grating mass. Actually ūi

p equal the combination of ūi
r for

rigid body motion and ūi
f for elastic deformation. Equation (1) illustrates that the position

vector of point P can be written as a function in the rotational coordinates, θi = [φi, θi, ψi]T

and translation coordinates, Ri. In this paper, three successive rotations about ZXZ are
used to describe the orientation of the grating device, they are referred to as Euler angles
representation [18].

2.2. System of Equations of Motion

In the floating frame of reference formulation, the flexible body’s deformation can be
defined with respect to its reference [19]. The constraints equation of MBS with rigid and
flexible bodies can be written as:

C(qr, q f , t) = 0 (2)
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where C is constraint functions vectors, qr is rigid bodies coordinates vector, q f is flexible
bodies coordinates vector and t is vector of the time. The MBS equations of motion can be
written as [20]:  Mrr Mr f CT

qr

M f r M f f CT
q f

Cqr Cq f 0


 q̈r

q̈f
λ

=
 Qr

Q f
Qd

 (3)

where Mrr and Mff is the system mass matrix related to rigid bodies and flexible bodies,
respectively. The dynamic coupling among the rigid body movement and the flexible body
deformation is described by the matrix Mrf and the matrix Mfr. The matrices Cqr and Cq f
are the Jacobian matrices, λ is the Lagrange multipliers vector, Qr = Qex is the external
applied forces vector acting on rigid bodies, Q f is the external applied forces vector acting
on flexible bodies and Qd is the quadratic velocity vector. The constraints Jacobian matrix
plays the most important role in kinematic and dynamic analyses of a multibody system.
In the case of linear kinematic constraints, the contribution to this matrix can be constant
in the coordinates [21].

Equation (3) yields a system of DAEs. The solution obtained the acceleration vector
q̈ and Lagrange multipliers λ. The acceleration vector can be integrated forward to
compute system velocities and configurations. The Lagrange multipliers vector is used
for calculating the generalized reaction forces that are used for establishing the design
stage [22]. Because of the direct numerical solution DAEs associated with the constrained
dynamics of a multibody system poses several computational difficulties mainly related to
stability [23]. A post-stabilization approach is employed to bring the position and velocity
back to the invariant manifold [24]. Position stabilization and velocities stabilization were
done for the modeling system. Following the Lagrange multiplier method, the numerical
algorithm of the equations of motion may proceed as follows:

1. An estimate of the preliminary situations that outline the preliminary configuration of
the multibody model is formed. The preliminary situations that constitute the prelim-
inary coordinates and velocities should be an excellent approximation of the precise
preliminary configuration:

2. Using the preliminary coordinates, the constraint Jacobian matrix is constructed,
assemble the global mass matrix and other equation of motion items;

3. Solve the linear set of the equations of motion Equation (3) for a constrained multibody
system in order to obtain the accelerations at instant time and the Lagrange multipliers;

4. Integrate the accelerations determined the coordinates and velocities. The vector of
Lagrange multipliers can be used to determine the generalized reaction forces using
Equation (4);

5. This process is maintained until the preferred give up of the simulation time is reached.

2.3. Design of Grating Device

Mechanical design is the process of designing and/or selecting mechanical compo-
nents and putting them together to accomplish a desired function according to specific
needs. Grating device bodies transmit forces from one point to another due to grating
movements. These forces produce stresses which are considered as the key factor of design
process, in consequence, the relations between allowable materials strength and dimensions
of designed components can be formulated. In this paper, the MBS is used to estimate
the static and dynamic reaction forces acting on grating device bodies [8].

The flexible and flexure bodies are considering the most important element in the sys-
tem because they are responsible for grating mass movements. The flexure bodies with
a novel design give required stiffness to balance the effect elasticity due to flexible bod-
ies [25]. The purpose of flexible and flexure bodies is to give maximum range of grating
movements and it must be designed to have the sufficient dynamic structural stability
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against the extreme loading and abnormal operation conditions and preventing the struc-
tural failure [26]. [

Fi

Mi

]
= −

[
C

iT
R

C
iT
θ

]
λi (4)

where Fi and Mi are denoted the vectors of reaction forces and torques. C
iT
R is a Jacobian

matrix related to translation coordinates and C
iT
θ is a Jacobian matrix related to rotational

coordinates for rigid and flexible bodies. According to the flowchart shown in Figure 3,
the dynamic for design procedure is carried out in several stages. Firstly, the grating device
system is drawn in the CAD program to obtain the initial parameters required for anal-
ysis. Secondly, the mathematical model is built using a multibody system approach and
equations of motion are contracted. By solving the equations of motion, the system bodies
accelerations and Lagrange multipliers are obtained. The accelerations are integrated for-
ward to obtain the system velocities and configurations until the end of the simulation time.
The reaction forces and torques Equation (4) can obtain from the multibody model using
Lagrange multipliers. The stress behavior of the grating device is examined using the MAT-
LAB FEATool Multiphysics toolkit based on reaction forces obtained from the multibody
model and selected suitable materials for system components. Finally, the optimum design
is achieved by changing materials of flexible and flexure bodies and the system dimensions
until reaching the maximum range of grating movement parameters.

Start

Assign initial parameters
Initial time
Initial configuration 
Initial velocity 

Apply Multibody system 
dynamics approach by 
constructing equation (3)

Stop

Solve for system 
acceleration and 
Lagrange multipliers

t > tend

t = t +  ∆t

Define materials 
properties for system 
bodies and required 
grating parameters

Check 
Stresses using 

FEA Multiphysics
in MATLAB

Compute maximum 
grating parameters 

X, Z, ᶿ, ᶲ, ᵠ
No

No

No
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Change material type

M
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en
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n

Create Grating device 
CAD mode with 
suitable dimension

Calculate reaction 
forces acting on 
system components 
using equation (4)

Yes

Figure 3. Dynamic for design procedure for grating tiling device.

3. Multibody Model of Grating Device

The grating device system model shown in Figure 1 can be constructed without loss
of generality, as shown in Table 1. According to the application, the grating mass motion
can be described with five DOFs: translation X and Z and rotational φ, θ and ψ.

Table 1. Grating device bodies.

Joint Type Body(i) Body(j)

Fixed Grating Base Ground
Prismatic(Z) Lower plate Grating Base
Prismatic(X) Upper plate Lower plate

Spherical Grating mass Upper plate
Fixed Flexure bodies Grating mass
Fixed Flexible bodies Flexure bodies
Fixed Flexible bodies Grating base
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The grating mass can be defined with respect to generalized coordinate as:

qi =
[

Ri
x Ri

y Ri
z φi θi ψi

]T
(5)

where qi is body generalized coordinates. The system of generalized coordinates of all
grating device bodies can define as:

q =
[
q1 q2 q3 q4 q5 ......, q14

]T
(6)

Kinematics constraints equations of spherical, prismatic and rigid joints are used
to drive constraints equations of grating system. The rigid joint between grating mass
and ground can be obtained by constraining all degree of freedom using mathematical
equations [27]. The constraints equations of the rigid joint between fixed base and ground
can be written as:

C1
(q1,qg ,t) =



R1
x

R1
y

R1
z

cos(ψ1) ∗ cos(φ1) ∗ cos(θ1)− sin(ψ1) ∗ sin(φ1)
cos(φ1) ∗ sin(ψ1) + cos(ψ1) ∗ sin(φ1)

cos(φ1) ∗ sin(θ1)


= 0 (7)

where qg is generalized coordinate vector for ground and it equals zero. The prismatic joint
can also be obtained by eliminating the freedom of the relative rotation between the two
bodies about the joint axis and the freedom of the relative translation on one axis [28]. A
prismatic joint which allows grating mass to translate in Z direction is shown in Figure 4.

Figure 4. Prismatic joint between base and lower plate.
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Constraints equations of prismatic joints between lower plate and upper plate can be
written as:

C3
(q2,q3,t) =

 h2 × h3

h2 × S23

n2Tn3

 = 0 (8)

where h2, h3, n2, n3 and S23 are orthogonal vectors, see Figure 4. Equation (8) contains five
independent constraint equations that define the kinematic conditions for the single-degree-
of-freedom prismatic joint. Constraint equations of spherical joint shown in Figure 5 can
be written as:

C4(q3, q4, t) = r3
p − r4

p = 0 (9)

C4(q3, q4, t) = R3 + A3ūi
3 − R4 − A4ū4

p = 0 (10)

where R3 and R4 are the global position vectors of local frames of bodies 3 and 4, respec-
tively. The matrices A3 and A4 are the transformation matrices. Finally, ū3

p and ū4
p are

the local position vectors defined between the body frame and joint frame. As spherical
joints only prevent translation movement, Equation (10) can be written as:

C4
(q3,q4,t) = R3 − R4 = 0 (11)

Figure 5. Spherical joint between upper plate and grating mass.

Because spherical joint allowed only rotation about three axes, the constraints equation
for spherical joints Equation (11) can be written as a function on translation constraints as:

C4
(q3,q4,t) =

 R3
x − R4

x
R3

y − R4
y

R3
z − R4

z

 = 0 (12)

In FFR formulation, fixed joints can be modeled similarly as in rigid multibody
systems. Figure 6 shows fixed joint between flexible body2 with flexure body2. Symbolic
computer procedure can be used to compute all constraints equations.
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Figure 6. Fixed joint between flexible body2 and flexure body2.

The system of external force vector acting in different bodies on grating device can be
obtained by the following equation.

Qi
ex =

[
Qi

exR
Qi

exθ

]
(13)

where Qi
exR is external force associated with translation coordinates and Qi

exθ external force
associated with rotational coordinates. For grating system the only external forces acting is
translation force Qi

exR = Fi acting on grating mass as the source of motion and the gravity
force Qi

exθ = 0. Piezoelectric actuators drive the central axis of the flexible bodies structure
and is fixed on the moving grating mass through fluxure bodies. F̄i = [F̄i

x F̄i
y F̄i

z] is force
components. The vector Qd absorbs terms that are quadratic in the velocities q̇ which
appearance with differentiating the constraints equation in terms of time to get velocity
and acceleration. The quadratic velocity vector can be written as:

Qd= −(Cqq̇)qq̇ − 2Cqtq̇ − Ctt (14)

The vector Ctt is the vector of second partial derivative of the constraint equations
with respect to time and the vector Cqt is the vector of partial derivative of the Jacobian
matrix time. The solution of Equation (3) presented in the preceding section defines
the vectors of acceleration and Lagrange multipliers. Acceleration can be integrated
foreword to obtained grating mass displacement. Forces as the source of stresses can be
calculated from the multibody system models as a function of generalized coordinates
using Lagrange multipliers.

4. Numerical Results and Discussion

In this section, dynamic for design procedure presented in previous sections is used
to design small-scale grating device system using MATLAB symbolic toolbox. The system
is fully constructed using CAD software with suitable dimensions and bodies masses and
inertias are listed in Table 2 and used as initial simulation parameters. The external applied
forces due to ceramic piezoelectric actuators are F = 4700 N. By applying external forces,
the corresponding frame displacement of the system is obtained by dominant movements
of piezoelectric actuators. Figure 7 shows constraints violation due to the prismatic joint
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between lower plate and grating base. The violation does not exceed 2 × 10−12 which
indicates the computational efficiency of multibody system model.

Table 2. Grating device parameters employed in the numerical simulation.

Components Mass (kg) Ixx(kg.m2) Iyy(kg.m2) Izz(kg.m2)

Grating base 86.34 4.92 3.64 2.8
Disk1 0.15 0.000035 0.000035 0.000018
Disk2 0.11 0.000024 0.000013 0.000013

Grating mass 78.26 1.8 1.3 0.985
Flexure part 0.068 0.0001 0.0001 0.0000025
Flexible part 0.012 0.00001 0.00001 0.00000063
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Figure 7. Constraints violation of the prismatic joint.

Table 3 illustrates the degree of freedom movement that the system are able to do.

Table 3. Displacement range of grating parameters.

DOF X (µm) Z (µm) φ (µrad) θ (µrad) ψ (µrad)

Displacement ±1.5 ±3.00 ±2.5 ± 1.5 ± 2.5

Figure 8 shows the global position vector of the point P associated with translation
coordinate. The translation along the Z-axis about 3 µm in case of applying four forces at
flexible bodies 1, 3, 4 and 5. The translation along the X-axis reaches 0.5 µm at the same
forces while there is no movement along Y-axis which indicates the accuracy of the formu-
lation of multibody constraints.
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Figure 8. Grating mass displacement.

Figure 9 shows the orientational coordinate of the grating mass with the same applying
fores. The grating mass can rotate 2.5 µrad about X and Z axis.
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Figure 9. Orientation of grating mass around three axes.

In order to optimize the grating device design, a multibody model provides all reaction
forces acting on system components with maximum load condition. Figure 10 shows
reactions forces acting on grating base, the values of the forces in X-axis and Z-axis are
altered and the only reaction force in Y-axis due to the system weight.
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Figure 10. Reaction forces acting on grating base.

Another useful type of data from multibody constraints are reaction moments. Figure 11
shows reactions moments acting on grating base. Likewise, other system bodies’ reaction
forces can be computed.
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Figure 11. Reaction moments acting on grating base.

The flexure and flexible bodies should be considered in the design of the tiling system
because its the most important factors for system stability. Flexible bodies are an elastic
element for the movement of system degree of freedom. The vector of acceleration and
Lagrange multipliers associated with flexible bodies can be computed from the multibody
model. The acceleration vector is integrated forward in order to calculate elastic displace-
ment of flexible bodies. Figures 12 and 13 shows displacement and orientation of local
frame at the middle of the flexible body four due to generalized coordinates associated
with flexible bodies.
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Figure 12. Flexible body 2 elastic displacement.
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Figure 13. Flexible body 2 elastic orientation.

Similar to rigid body, Lagrange multipliers can be used to compute reaction forces
acting on flexible bodies. Figures 14 and 15 shows the reaction forces between flexible and
grating base used in design processes.
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Figure 14. Reaction forces at fixed joint between flexure and flexible body 2.
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Figure 15. Reaction moments at fixed joint between flexure and flexible body 2.

The material selection as well as the geometrical dimension of flexible and flexure
bodies should be estimated to ensure the system’s stability. Therefore, the stiffness of
the flexible bodies must be much lower than the rest of the system components with
considerable factor of safety. Table 4 illustrates the primarily design properties of flexible
and flexure bodies.

Table 4. Flexible and Flexure bodies mass properties.

Properties/Body Flexible Flexure

Mass (Kg) 0.012 0.068
Density (Kg/m2) 8000 2810

Elastic Modulus (GN/m2) 193 72
Poisson ratio 0.27 0.33

Tensile strength (MN/m2) 5800 2200
Yield strength (MN/m2) 1720 950

Dynamic reactions forces acting on flexible and flexure bodies are obtained and fed
forward to FEATool Multiphysics to examine the stresses with maximum range of grating
movement. According to the DFD procedures shown in Figure 3, the stress distribution
of flexible body2 with the corresponding displacement along Z-axis show the highest of
1.5 µm, see Figures 16 and 17. It is found that, the maximum stress value at the neck
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point is 700 MN/m2 which is lesser than yield strength of flexible body material, see
Table 4. In addition, the maximum value of the stress on the flexure bodies is less than its
material yield strength with factor of safety 3.4. At the end of the procedures, the designed
parameters of grating device reach the required performance without breakdown.

Figure 16. Stress distribution on flexible body2.

Figure 17. Flexible body2 displacement along the Z-axis.

5. Experimental Validation

In this section, we describe experimental work carried out to validate the DFD proce-
dures of the designed grating device system, a test system of the grating device as shown
in Figure 18 was built and the grating mass movements were measured. The grating
device parts are manufactured based on CAD model dimension and selected materials
in Table 2 and assembled with other equipment. The equipment includes a piezoelectric
actuator with a controller and a displacement sensor with a controller. The piezoelectric
actuator used in the grating device test rig is a ceramic type that has a mechanical de-
sign of stacked piezoelectric ceramics, combined with a flexible hinge support structure
and a shell structure into an integrated structure to form a packaged used in a variety of
precision motion control applications. Piezoelectric ceramic actuators have fast response,
large generation pressure, and highly accurate operation resonance making it possible to
have high micro-displacement resolution and strong stability. The PTZ used in our test
has displacement up to 60 µm and output force output up to 4700 N with a customized
fixed installation structure. The piezoelectric ceramic drive controller is used to control
the piezoelectric actuator positions and included a power amplifier, sensor control, chassis
and power supply. The high-resolution capacitive displacement sensor system is used
to measure the displacements of the grating mass body. Capacitive sensors are designed
for non-contact measurement of displacement, distance and position due to their high
signal stability and resolution. Capacitive sensors can measure the nano-position of mov-
ing objects with excellent precision and duo to the high sensor bandwidth, they can be
used in closed-loop control of high dynamics applications. The capacitive non-contact
sensor is fully controlled using a servo controller module with a signal amplifier and PC
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interface. Kinematic results from the capacitive sensor are computed and compared with
the multibody system model results.

Figure 18. Test rig: (1) grating device, (2) piezoelectric ceramic actuators, (3) piezoelectric ac-
tuators controller , (4) capacitive displacement sensor, (5) displacement sensor controller , (6)
display computer.

Figure 19 shows the comparisons between the output grating mass displacement of
the MBS model and the experimental data. Since the multibody model and experiment
data have similar results, the dynamic for design procedure of the grating device system
is accurate and can be used later in system identification and design optimization of
the grating device system.

0 0

Figure 19. Comparison between MBS model result and experimental data.

6. Conclusions

This paper introduces a dynamic for design DFD procedure of novel grating tiling de-
vice for maximum ranges of grating movements based on the multibody system approach.

(1) The grating device model was successfully implemented in a simulation tool entirely
elaborated in MATLAB including symbolic and computational work. Equation of
motion solution included system coordinates and Lagrange multipliers are obtained.
These multipliers are used to estimate the reaction forces utilized in the design
procedure of the grating system.

(2) From the results presented in the preceding sections, the optimal design of such
a grating device is carried out for maximum ranges of grating movements. The de-
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sign procedure proposed in this work is systematic and oriented for grating devices
to realize the positioning and attitude adjustment of the moving grating.

(3) The design was constructed in real life and the movement was verified experimen-
tally, which confirms the effectiveness of the proposed procedure. The design method
of the grating device system based on the DFD procedure proposed in this paper
provides new ideas and methods for the design of large load, and high-precision
grating systems.
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