FEATool Multiphysics
v1.16.6
Finite Element Analysis Toolbox
|
EX_CONVDIFF5 2D Convection and diffusion equation with high Peclet number.
[ FEA, OUT ] = EX_CONVDIFF5( VARARGIN ) Convection and diffusion equation on a unit square with high Peclet (Cell Reynolds) number requiring artificial stabilization/numerical diffusion. Accepts the following property/value pairs.
Input Value/{Default} Description ----------------------------------------------------------------------------------- igrid scalar {0}/1 Cell type (0=quadrilaterals, 1=triangles) hmax scalar {1/20} Max grid cell size a scalar {cos(pi/3)} Convection velocity in x-direction b scalar {sin(pi/3)} Convection velocity in y-direction cd scalar {1e-4} Diffusion coefficient sfun string {sflag1} Shape function artstab scalar {1}/0/2 Artificial stabilization (0=no stabilization) 1=isotropic diffusion, 2=streamline diffusion iplot scalar {1}/0 Plot solution (=1) . Output Value/(Size) Description ----------------------------------------------------------------------------------- fea struct Problem definition struct out struct Output struct
cOptDef = { ... 'igrid', 0; ... 'hmax', 1/20; ... 'a', cos(pi/3); ... 'b', sin(pi/3); ... 'cd', 1e-4; ... 'sfun', 'sflag1'; ... 'artstab', 1; ... 'iplot', 1; ... 'tol', 0.1; ... 'fid', 1 }; [got,opt] = parseopt( cOptDef, varargin{:} ); fid = opt.fid; % Geometry definition and grid generation. fea.geom.objects = { gobj_rectangle() }; switch opt.igrid case -1 fea.grid = rectgrid( round(1/opt.hmax) ); fea.grid = quad2tri( fea.grid); case 0 fea.grid = rectgrid( round(1/opt.hmax) ); case 1 fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', fid, 'dprim', false ); end % Problem definition. fea.sdim = { 'x' 'y' }; % Coordinate names. fea = addphys( fea, @convectiondiffusion ); % Add convection and diffusion physics mode. fea.phys.cd.sfun = { opt.sfun }; % Set shape function. fea.phys.cd.eqn.coef{2,4} = { opt.cd }; % Set diffusion coefficient. fea.phys.cd.eqn.coef{3,4} = { opt.a }; % Convection velocity in x-direction. fea.phys.cd.eqn.coef{4,4} = { opt.b }; % Convection velocity in y-direction. fea.phys.cd.eqn.coef{5,4} = { 1 }; fea.phys.cd.bdr.sel = [1 1 1 1]; fea.phys.cd.bdr.coef{1,end} = {1 0 0 1}; % Numerical stabilization. switch opt.artstab case 1 fea.phys.cd.prop.artstab.id = 1; fea.phys.cd.prop.artstab.id_coef = 0.5; case 2 fea.phys.cd.prop.artstab.sd = 1; fea.phys.cd.prop.artstab.sd_coef = 0.25; end % Parse and solve problem. fea = parsephys( fea ); % Check and parse physics modes. fea = parseprob( fea ); % Check and parse problem struct. fea.sol.u = solvestat( fea, 'fid', fid ); % Call to stationary solver. % Postprocessing. x = linspace( 0, 1, 2*(1/opt.hmax)+1 ); y = 0.8*ones(size(x)); c0p8 = evalexpr( 'c', [x;y], fea ); c_ref = 1 + 0.1/0.05*x'; c_ref(c_ref>1.9275) = 1.9275; if( opt.iplot>0 ) figure subplot( 1, 2, 1 ) postplot( fea, 'surfexpr', 'c', 'isoexpr', 'c' ) title( 'Solution c' ) subplot( 1, 2, 2 ) plot( x, c_ref, 'r' ) hold on plot( x, c0p8, 'b--' ) title( 'Solution at y = 0.8' ) xlabel( 'x' ) ylabel( 'c' ) grid on end % Error checking. ix = find(x<=0.9); out.err = norm( c_ref(ix) - c0p8(ix) )./norm( c_ref(ix) ); out.pass = out.err < opt.tol; if( nargout==0 ) clear fea out end