FEATool  v1.9
Finite Element Analysis Toolbox
ex_euler_beam1.m File Reference

Description

EX_EULER_BEAM1 1D Euler-Bernoulli beam model example.

[ FEA, OUT ] = EX_EULER_BEAM1( VARARGIN ) 1D Euler-Bernoulli beam model example. Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
L           scalar {2}             Beam length
E           scalar {3}             Elastic modulus
I           expression {4}         Cross section moment of intertia
q           expression {5}         Beam force
nx          scalar {6}             Number of grid cells
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output stuct

Code listing

 cOptDef = { 'L',        2;
             'E',        3;
             'I',        4;
             'q',        5;
             'nx'        6;
             'iplot',    1;
             'tol',      1e-2;
             'fid',      1 };
 [got,opt] = parseopt( cOptDef, varargin{:} );
 fid       = opt.fid;


% Grid generation.
 fea.sdim = {'x'};
 fea.grid = linegrid( opt.nx, 0, opt.L );


% Problem and equation definitions.
 fea = addphys( fea, @eulerbeam );
 fea.phys.eb.eqn.coef{3,end}  = { opt.E };
 fea.phys.eb.eqn.coef{4,end}  = { opt.I };
 fea.phys.eb.eqn.coef{5,end}  = { opt.q };
 fea.phys.eb.bdr.coef{1,5}{2} = 0;
 fea = parsephys( fea );


% Coefficients and equation/postprocessing expressions.
 fea.expr = { 'L',  opt.L ;
              'M',  fea.phys.eb.eqn.vars{3,2} };


% Parse and solve problem.
 fea = parseprob( fea );
 fea.sol.u = solvestat( fea, 'icub', 3, 'fid', opt.fid );


% Postprocessing.
 if( opt.iplot )
   figure
   subplot(3,1,1), hold on
   postplot( fea, 'surfexpr', 'E_eb*I_eb*v/(q_eb*L^4)', 'linewidth', 2 )
   postplot( fea, 'surfexpr', 'x^2*(6*L^2-4*L*x+x^2)/24/L^4', 'color', 'r', 'linestyle', ':' )
   title( 'E_eb*I_eb*v(x)/(q_eb*L^4)' )
   axis normal, grid on

   subplot(3,1,2), hold on
   postplot( fea, 'surfexpr', 'E_eb*I_eb*vx/(q_eb*L^3)', 'linewidth', 2 )
   postplot( fea, 'surfexpr', 'x*(3*L^2-3*L*x+x^2)/6/L^3', 'color', 'r', 'linestyle', ':' )
   title( 'E_eb*I_eb*theta(x)/(q_eb*L^3)' )
   axis normal, grid on

   subplot(3,1,3), hold on
   postplot( fea, 'surfexpr', 'M/(q_eb*L^2)', 'linewidth', 2 )
   postplot( fea, 'surfexpr', '-1/2*(L-x)^2/L^2', 'color', 'r', 'linestyle', ':' )
   axis normal, grid on
   title( 'M(x)/(q_eb*L^2)' )
 end


% Error checking.
 err_v  = evalexpr( 'abs(v-q_eb*x^2*(6*L^2-4*L*x+x^2)/(24*E_eb*I_eb))', ...
                    linspace(0,opt.L,3*opt.nx), fea );
 err_th = evalexpr( 'abs(vx-q_eb*x*(3*L^2-3*L*x+x^2)/(6*E_eb*I_eb))', ...
                    linspace(0,opt.L,3*opt.nx), fea );
 err_M  = evalexpr( 'abs(vxx-q_eb/2*(L-x)^2/(E_eb*I_eb))', ...
                    linspace(0,opt.L,3*opt.nx), fea );
 err = norm([err_v;err_th;err_M]);


 out.err  = err;
 out.pass = out.err<opt.tol;
 if ( nargout==0 )
   clear fea out
 end