FEATool  v1.9
Finite Element Analysis Toolbox
ex_magnetostatics4.m File Reference

Description

EX_MAGNETOSTATICS4 2D Axisymmetric cylindrical magnet example.

[ FEA, OUT ] = EX_MAGNETOSTATICS4( VARARGIN ) 2D Axisymmetric magnetostatic test example for a cylindrical magnet with no electrical currents.

Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
sfun        string {sflag2}        Shape function for pressure
hmax        scalar {0.0025}        Max grid cell size
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

Code listing

 cOptDef = { 'sfun',     'sflag2';
             'iplot',    1;
             'hmax',     0.0025;
             'tol',      1e-2;
             'fid',      1 };
 [got,opt] = parseopt(cOptDef,varargin{:});
 fid       = opt.fid;


% Geometry and grid generation.
 fea.sdim = { 'r' 'z' };
 fea.geom.objects = { gobj_rectangle( 0, 0.03,  -0.03, 0.03, 'R1' ) ...
                      gobj_rectangle( 0, 0.005, -0.01, 0.01, 'R2' ) };

 fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', opt.fid );


% Problem definition.
 fea = addphys( fea, {@magnetostatics 1} );
 fea.phys.ms.eqn.coef{4,end} = { 1 0 };
 fea.phys.ms.sfun            = { opt.sfun };


% Parse and solve problem.
 fea       = parsephys( fea );
 fea       = parseprob( fea );
 fea.sol.u = solvestat( fea, 'fid', opt.fid );   % Call to stationary solver.


% Postprocessing.
 if( opt.iplot>0 )
   figure
   postplot( fea, 'surfexpr', fea.phys.ms.eqn.vars{1,2}, 'arrowexpr', fea.phys.ms.eqn.vars{9,2} )
   title( 'Magnetic potential (surface), flux density (arrow)' )
 end


% Error checking.
 [Atmin,Atmax]  = minmaxsubd( fea.phys.ms.eqn.vars{1,2}, fea );
 i_rbdr  = findbdr( fea, ['r>=0.03-',num2str(sqrt(eps))] );
 Scb2 = intbdr( fea.phys.ms.bdr.vars{2,2}, fea, i_rbdr );
 out.err = [ abs(Atmax-2.824e-9)/2.814e-9 ;
             abs(Scb2+4.876998e-4)/4.876998e-4 ];
 out.pass = all( out.err < opt.tol );


 if ( nargout==0 )
   clear fea out
 end