FEATool  v1.7.1
Finite Element Analysis Toolbox
 All Files Functions Pages
ex_planestress5.m File Reference

Description

EX_PLANESTRESS5 Plane stress example for an elliptic membrane.

[ FEA, OUT ] = EX_PLANESTRESS5( VARARGIN ) Example to calculate displacements and stresses for an elliptic membrane with a hole in it. NAFEMS benchmark example LE1.

Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
E           scalar {210e9}         Modulus of elasticity
nu          scalar {0.3}           Poissons ratio
hmax        scalar {0.1}           Max grid cell size
sfun        string {sflag2}        Shape function for displacements
iplot       scalar 0/{1}           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

Code listing

 cOptDef = { ...
   'E',        210e9; ...
   'nu',       0.3; ...
   'hmax',     0.1; ...
   'sfun',     'sflag2'; ...
   'iplot',    1; ...
   'tol',      0.05; ...
   'fid',      1 };
 [got,opt] = parseopt( cOptDef, varargin{:} );
 fid       = opt.fid;


% Geometry definition.
 gobj1 = gobj_ellipse( [0 0], 3.25, 2.75, 'E1' );
 gobj2 = gobj_ellipse( [0 0], 2, 1, 'E2' );
 gobj3 = gobj_rectangle( -3.25, 3.25, -2.75, 0, 'R1' );
 gobj4 = gobj_rectangle( -3.25, 0, 0, 2.75, 'R2' );
 fea.geom.objects = { gobj1 gobj2 gobj3 gobj4 };
 fea = geom_apply_formula( fea, 'E1-E2-R1-R2' );
 fea.sdim = { 'x' 'y' };


% Grid generation.
 fea.grid = gridgen( fea, 'hmax', opt.hmax, 'fid', fid );
 n_bdr    = max(fea.grid.b(3,:));   % Number of boundaries.


% Boundary conditions.
 dtol  = sqrt(eps);
 lbdr  = findbdr( fea, ['x<=',num2str(dtol)] );   % Left boundary number.
 lobdr = findbdr( fea, ['y<=',num2str(dtol)] );   % Lower boundary number.


% Problem definition.
 E11 = opt.E/(1-opt.nu^2);
 E12 = opt.nu*E11;
 E22 = E11;
 E33 = opt.E/(1+opt.nu)/2;

 fea = addphys(fea,@planestress);      % Add plane stress physics mode.
 fea.phys.pss.eqn.coef{1,end} = { opt.nu };
 fea.phys.pss.eqn.coef{2,end} = { opt.E  };
 fea.phys.pss.sfun            = { opt.sfun opt.sfun };   % Set shape functions.

 bctype = mat2cell( zeros(2,n_bdr), [1 1], ones(1,n_bdr) );
 bctype{1,lbdr}  = 1;
 bctype{2,lobdr} = 1;
 fea.phys.pss.bdr.coef{1,5} = bctype;

% Add normal load to boundary 1.
 bccoef = mat2cell( zeros(2,n_bdr), [1 1], ones(1,n_bdr) );
 bccoef{1,1} = 'nx*10e6';
 bccoef{2,1} = 'ny*10e6';
 fea.phys.pss.bdr.coef{1,end} = bccoef;


% Parse and solve problem.
 fea       = parsephys(fea);
 fea       = parseprob(fea);
 fea.sol.u = solvestat( fea, 'fid', fid );


% Postprocessing.
 s_sy = [num2str(E12),'*ux+',num2str(E11),'*vy'];
 if ( opt.iplot>0 )
   figure
   postplot( fea, 'surfexpr', s_sy, 'isoexpr', s_sy )
   title('Stress, x-component')
 end


% Error checking.
 sy_D     = evalexpr( s_sy, [2;0]+sqrt(eps)*1e1, fea );
 out.sy_D = sy_D;
 out.err  = abs(sy_D - 92.7e6)/92.7e6;
 out.pass = out.err <= opt.tol;


 if ( nargout==0 )
   clear fea out
 end