|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_POISSON7 Poisson equation on a unit circle with a point source.
[ FEA, OUT ] = EX_POISSON7( VARARGIN ) Poisson equation on a unit circle with a point source (represented by a point constraint) and exact solution u = -1/(2*pi)*log(r). Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
hmax scalar {0.1} Max grid cell size (<0 quadrilateral grid)
sfun string {sflag1} Shape function
iphys scalar 0/{1} Use physics mode to define problem (=1)
or directly define fea.eqn/bdr fields (=0)
solver string fenics/{default} Use FEniCS or default solver
iplot scalar 0/{1} Plot solution (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { ...
'hmax', 0.02;
'refsol', '-1/(2*pi)*log(sqrt(x^2+y^2))';
'sfun', 'sflag1';
'iphys', 1;
'solver', '';
'iplot', 1;
'tol', 0.2;
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid = opt.fid;
% Geometry definition.
fea.geom.objects = { gobj_circle() };
% Grid generation.
if( opt.hmax<0 )
fea.grid = circgrid(10);
else
hmax = opt.hmax;
fh = @(p,varargin) 3*hmax + (p(:,1).^2+p(:,2).^2);
fea.grid = gridgen( fea, 'hmax', hmax, 'fid', fid, 'fixpnt', [0 0], 'hdfcn', fh ) ;
end
% Problem definition.
fea.sdim = { 'x' 'y' }; % Coordinate names.
if( opt.iphys==1 )
fea = addphys( fea, @poisson ); % Add Poisson equation physics mode.
fea.phys.poi.sfun = { opt.sfun }; % Set shape function.
fea.phys.poi.eqn.coef{3,4} = { 0 }; % Set source term coefficient.
fea = parsephys(fea); % Check and parse physics modes.
else
fea.dvar = { 'u' }; % Dependent variable name.
fea.sfun = { opt.sfun }; % Shape function.
% Define equation system.
fea.eqn.a.form = { [2 3;2 3] }; % First row indicates test function space (2=x-derivative + 3=y-derivative),
% second row indicates trial function space (2=x-derivative + 3=y-derivative).
fea.eqn.a.coef = { 1 }; % Coefficient used in assembling stiffness matrix.
fea.eqn.f.form = { 1 }; % Test function space to evaluate in right hand side (1=function values).
fea.eqn.f.coef = { 0 }; % Coefficient used in right hand side.
% Define boundary conditions.
n_bdr = max(fea.grid.b(3,:));
fea.bdr.d = cell(1,n_bdr);
[fea.bdr.d{:}] = deal(0); % Assign zero to all boundaries (Dirichlet).
fea.bdr.n = cell(1,n_bdr); % No Neumann boundaries ('fea.bdr.n' empty).
end
% Set point constraint.
[~,i_mid] = min( fea.grid.p(1,:).^2 + fea.grid.p(2,:).^2 );
fea.pnt.type = 'source';
fea.pnt.index = i_mid;
fea.pnt.dvar = 1;
fea.pnt.expr = 1;
% Parse and solve problem.
fea = parseprob( fea ); % Check and parse problem struct.
if( strcmp(opt.solver,'fenics') )
fea = fenics( fea, 'fid', fid, 'nproc', 1 );
else
fea.sol.u = solvestat( fea, 'fid', fid ); % Call to stationary solver.
end
% Postprocessing.
s_err = ['abs(',opt.refsol,'-u)'];
if( opt.iplot>0 )
figure
subplot(3,1,1)
postplot( fea, 'surfexpr', 'u', 'surfhexpr', 'u', 'axequal', 'on' )
title('Solution u')
subplot(3,1,2)
postplot( fea, 'surfexpr', opt.refsol, 'surfhexpr', opt.refsol, 'axequal', 'on' )
title('Exact solution')
subplot(3,1,3)
postplot( fea, 'surfexpr', s_err, 'surfhexpr', s_err, 'axequal', 'on' )
title('Error')
end
% Error checking.
if ( size(fea.grid.c,1)==4 )
xi = [0;0];
else
xi = [1/3;1/3;1/3];
end
err = evalexpr0(s_err,xi,1,1:size(fea.grid.c,2),[],fea);
ref = evalexpr0('u',xi,1,1:size(fea.grid.c,2),[],fea);
err = sqrt(sum(err.^2)/sum(ref.^2));
if( ~isempty(fid) )
fprintf(fid,'\nL2 Error: %f\n',err)
fprintf(fid,'\n\n')
end
out.err = err;
out.pass = out.err<opt.tol;
if( nargout==0 )
clear fea out
end