|
FEATool Multiphysics
v1.17.5
Finite Element Analysis Toolbox
|
EX_SWIRL_FLOW2 2D Axisymmetric swirl flow in step domain.
[ FEA, OUT ] = EX_SWIRL_FLOW2( VARARGIN ) Axisymmetric swirl for in tubular step region where the inner cylindrical wall is rotating.
Accepts the following property/value pairs.
Input Value/{Default} Description
-----------------------------------------------------------------------------------
omega scalar {100} Angular rotational velocity (of inner wall)
sf_u string {sflag1} Shape function for velocity
sf_p string {sflag1} Shape function for pressure
iplot scalar 0/{1} Plot solution (=1)
.
Output Value/(Size) Description
-----------------------------------------------------------------------------------
fea struct Problem definition struct
out struct Output struct
cOptDef = { 'omega', 100;
'sf_u', 'sflag1';
'sf_p', 'sflag1';
'iphys', 1;
'iplot', 1;
'tol', [];
'fid', 1 };
[got,opt] = parseopt(cOptDef,varargin{:});
fid = opt.fid;
% Geometry and grid generation.
fea.sdim = {'r' 'z'};
fea.geom.objects = { gobj_rectangle(0.5,1.5,0,3) gobj_rectangle(1.0,1.5,1.5,3,'R2') };
fea = geom_apply_formula( fea, 'R1-R2' );
fea.grid = gridgen( fea, 'hmax', 0.1, 'fid', fid );
% Equation definition.
if ( opt.iphys==1 )
fea = addphys(fea,@swirlflow);
fea.phys.sw.eqn.coef{1,end} = { 1 };
fea.phys.sw.eqn.coef{2,end} = { 1 };
fea.phys.sw.sfun = [ repmat( {opt.sf_u}, 1, 3 ) {opt.sf_p} ];
fea.phys.sw.bdr.sel = [1 1 5 2 1 1];
fea.phys.sw.bdr.coef{2,end}{2,4} = opt.omega;
fea.phys.sw.prop.artstab.ps = isequal(opt.sf_u,opt.sf_p);
fea = parsephys(fea);
if( isfield(fea,'constr') )
fea = rmfield(fea,'constr');
end
else
opt.sf_u = 'sflag2';
opt.sf_p = 'sflag1';
fea.dvar = { 'u', 'v', 'w', 'p' };
fea.sfun = [ repmat( {opt.sf_u}, 1, 3 ) {opt.sf_p} ];
c_eqn = { 'r*rho*u'' - r*miu*(2*ur_r + uz_z + wr_z) + r*rho*(u*ur_t + w*uz_t) + r*p_r = r*Fr - 2*miu/r*u_t + p_t + rho*v*v_t';
'r*rho*v'' - r*miu*( vr_r + vz_z) + miu*v_r + r*rho*(u*vr_t + w*vz_t) + rho*u*v_t = r*Fth + miu*(v_r - 1/r*v_t)';
'r*rho*w'' - r*miu*( wr_r + uz_r + 2*wz_z) + r*rho*(u*wr_t + w*wz_t) + r*p_z = r*Fz';
'r*ur_t + r*wz_t + u_t = 0' };
fea.eqn = parseeqn( c_eqn, fea.dvar, fea.sdim );
fea.coef = { 'rho', 1 ;
'miu', 1 ;
'Fr', 0 ;
'Fth', 0 ;
'Fz', 0 };
% Boundary conditions.
fea.bdr.d = { 0 0 [] 0 0 0 ;
0 0 [] opt.omega 0 0 ;
0 0 0 0 0 0 ;
[] [] [] [] [] [] };
fea.bdr.n = cell(size(fea.bdr.d));
end
% Fix pressure at p([r,z]=[ro,h/2]) = 0.
[~,ix_p] = min( sqrt( (fea.grid.p(1,:)-1.5).^2 + (fea.grid.p(2,:)-1.5).^2) );
fea.pnt = struct( 'type', 'constr', ...
'index', ix_p, ...
'dvar', 'p', ...
'expr', '0' );
% Parse and solve problem.
fea = parseprob( fea );
fea.sol.u = solvestat( fea, 'maxnit', 50, 'fid', fid );
% Postprocessing.
if( opt.iplot )
postplot( fea, 'surfexpr', 'sqrt(u^2+v^2+w^2)', 'isoexpr', 'v' )
end
% Error checking.
out.ref = [ -6.1 10.5 73 1.25 ];
if( ~got.tol )
if( opt.sf_u(end) == '2' )
opt.tol = 0.05;
else
opt.tol = 0.3;
end
end
[u_min,u_max] = minmaxsubd( 'u', fea );
out.val = [ u_min u_max intsubd('v',fea) intsubd('w',fea) ];
out.pass = mean(abs(out.val-out.ref)./abs(out.ref)) < opt.tol;
if( nargout==0 )
clear fea out
end