FEATool Multiphysics  v1.13
Finite Element Analysis Toolbox
su2.m File Reference

Description

SU2 MATLAB SU2 CFD solver CLI interface.

[ U, TLIST, VARS ] = SU2( PROB, VARARGIN ) Export, solves, or imports the solved problem described in the PROB finite element struct using the SU2 CFD solver. Accepts the following property/value pairs.

Input       Value/{Default}              Description
-----------------------------------------------------------------------------------
mode        check, export, solve, import Command mode(s) to call (default all)
cfg         default                      Default SU2 config
turb        scalar {0}                   Turbulence model:      0: none/laminar
                                           1: Spalart-Allmaras, 2:k-Omega (SST)
init        scalar {[]}                  Initial values   []: init expressions
                                           i: use solution
workdir     default                      SU2 work directory
fname       default                      SU2 work filename
logfname    default                      SU2 log/output filename
fid/logfid  scalar {1}                   Log file/message output file handle
hax         handle                       Axis handle to plot convergence
naxts       scalar {250}                 Maximum number of time steps to plot

Also accepts the following SU2 cfg property/value pairs to set the cfg file during export

Property      Value/{Default}         Description
-----------------------------------------------------------------------------------
fname         default                 SU2 work filename
solver        string {INC_NAVIER_STOKES}   SU2 governing equations/solver
ischeme       scalar/{0}              Time stepping scheme
                                           0 - Stationary
                                           1 - Time stepping
                                           2 - Dual time stepping (1st order)
                                           3 - Dual time stepping (2nd order)
tstep         scalar/{0.1}            Time step size
tmax          scalar/{1}              Maximum simulation time
wrtfreq       scalar/{1}              Frequency to output solution files
tol           scalar {1e-8}           Stopping criteria for (P) residuals
maxit         scalar/{9999/20}        Maximum number of iterations (stat/timedep)
rho           scalar {1.0}            Density (constant)
miu           scalar {1.0}            Viscosity (constant)
upwind        string {venk_wang/muscl} Discretization scheme, valid options are
                                      the central schemes JST and LAX-FRIEDRICH,
                                      or UPWIND (equivalent to FDS for incompressible,
                                      ROE for compressible) with MUSCL and slope limiting
                                      NONE, VENKATAKRISHNAN, VENKATAKRISHNAN_WANG,
                                      BARTH_JESPERSEN, or VAN_ALBADA_EDGE
init          vector {0,0,0}          Initial values
restart       string {}               Restart (CSV) file
mesh          string {mesh.su2}       SU2 mesh filename
nsdim         int {2}                 Number of space dimensions
isaxi         boolean {false}         Axisymmetric mode (only compressible)
Examples
  1) Laminar Hagen-Poiseuille flow in a channel with convergence plot.

  n = 20; rho = 1; miu = 1; uin = 1;

  fea.sdim = {'x' 'y'};
  fea.geom.objects = { gobj_rectangle(0,3,0,1) };
  fea.grid = rectgrid( 3*n, 1*n, [0 3;0 1] );

  fea = addphys(fea,@navierstokes);
  fea.phys.ns.eqn.coef{1,end} = { rho };
  fea.phys.ns.eqn.coef{2,end} = { miu };
  fea.phys.ns.eqn.coef{5,end} = { uin };
  fea.phys.ns.bdr.sel(2) = 4;
  fea.phys.ns.bdr.sel(4) = 2;
  fea.phys.ns.bdr.coef{2,end}{1,4} = uin;

  fea = parsephys( fea );
  fea = parseprob( fea );

  fea.sol.u = su2( fea, 'tol', 1e-6, 'hax', axes() );

  figure
  subplot(2,1,1)
  postplot( fea, 'surfexpr', 'p', 'isoexpr', 'sqrt(u^2+v^2)', 'arrowexpr', {'u' 'v'} )

  subplot(2,1,2), hold on, grid on
  xlabel('Velocity profile at outlet'), ylabel('y')
  x = 3*ones(1,100);
  y = linspace(0,1,100);
  U_ref = 6*uin*(y.*(1-y))./1^2;
  U = evalexpr( 'sqrt(u^2+v^2)', [x;y], fea );
  plot( U_ref, y, 'r--', 'linewidth', 3 )
  plot( U, y, 'b-', 'linewidth', 2.5 )
  legend( 'Analytic solution', 'Computed solution' )
See also
ex_navierstokes1-7,10,12, ex_compressibleeuler2-4