FEATool Multiphysics  v1.13 Finite Element Analysis Toolbox
ex_heattransfer7.m File Reference

## Description

EX_HEATTRANSFER7 1D Transient heat diffusion with analytic solution.

[ FEA, OUT ] = EX_HEATTRANSFER7( VARARGIN ) Transient heat diffusion problem with analytic solution. A 1 m rod is kept at fixed temperature on one end and constant outward heat flux at the other end as in the following illustration.

       +---------- L=1m ----------+ T = 25
q_n = 1       T(t=0) = 25


Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
hmax        scalar {0.1}           Grid cell size
sfun        string {sflag1}        Finite element shape function
solver      string fenics/{}       Use FEniCS or default solver
ischeme     scalar {2}/1/3         Time stepping scheme
tmax        scalar {0.2}           Maximum time
tstep       scalar {0.01}          Time step size
iplot       scalar {1}/0           Plot solution (=1)
.
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct

ex_heattransfer8.

# Code listing

 cOptDef = { 'hmax',     0.1;
'sfun',     'sflag1';
'solver',   '';
'ischeme',  2;
'tmax',     0.2;
'tstep',    0.01;
'iplot',    1;
'tol',      1e-3;
'fid',      1 };
[got,opt] = parseopt(cOptDef,varargin{:});

% Grid generation.
fea.grid = linegrid( round(1/opt.hmax), 0, 1 );

% Problem definition.
fea.sdim  = { 'x' };                      % Space coordinate name.
fea = addphys( fea, @heattransfer );      % Add heat transfer physics mode.
fea.phys.ht.sfun = { opt.sfun };          % Set shape function.

% Equation coefficients.
fea.phys.ht.eqn.coef{1,end} = 1;          % Density.
fea.phys.ht.eqn.coef{2,end} = 1;          % Heat capacity.
fea.phys.ht.eqn.coef{3,end} = 1;          % Thermal conductivity.
fea.phys.ht.eqn.coef{6,end} = { 25 };     % Initial temperature.

% Boundary conditions.
fea.phys.ht.bdr.sel = [ 4 1 ];
fea.phys.ht.bdr.coef{1,end} = { [] 25 };
fea.phys.ht.bdr.coef{4,end}{1}{1} = -1;

% Parse physics modes and problem struct.
fea = parsephys(fea);
fea = parseprob(fea);

% Compute solution.
if( strcmp(opt.solver,'fenics') )
fea = fenics( fea, 'fid', opt.fid, ...
'tstep', opt.tstep, 'tmax', opt.tmax, 'ischeme', opt.ischeme );
tlist = fea.sol.t;
else
[fea.sol.u, tlist] = solvetime( fea, 'fid', opt.fid, 'init', {'T0_ht'}, 'ischeme', opt.ischeme, ...
'tmax', opt.tmax, 'tstep', opt.tstep );
end

% Postprocessing.
T_ref = refsol( fea.grid.p', tlist(end) );
if( opt.iplot>0 )
postplot( fea, 'surfexpr', 'T', 'axequal', 0 )
title(['Temperature at t=',num2str(tlist(end))])
xlabel('x')
ylabel('T')

hold on
plot( fea.grid.p, T_ref, 'r--' )
end

% Error checking.
T_sol = evalexpr( 'T', fea.grid.p, fea );
out.err  = norm( abs(T_sol-T_ref)/T_ref );
out.pass = out.err<opt.tol;

if( nargout==0 )
clear fea out
end

% -----------------------------------