FEATool Multiphysics  v1.13
Finite Element Analysis Toolbox
ex_heattransfer8.m File Reference

Description

EX_HEATTRANSFER8 Space-time heat diffusion with analytic solution.

[ FEA, OUT ] = EX_HEATTRANSFER8( VARARGIN ) One dimensional transient heat diffusion problem converted to a 2D space-time finite element formulation with analytic solution. A 1 m rod is kept at fixed temperature on one end and constant outward heat flux at the other end as in the following illustration.

       +---------- L=1m ----------+ T = 25
     q_n = 1       T(t=0) = 25

Accepts the following property/value pairs.

Input       Value/{Default}        Description
-----------------------------------------------------------------------------------
hmax        scalar {0.1}           Grid cell size in x-direction
igrid       scalar {0}/1/2         Cell type (0=quadrilaterals, 1=triangles,
sfun        string {sflag1}        Finite element shape function
solver      string fenics/{}       Use FEniCS or default solver
tmax        scalar {0.2}           Maximum time
tstep       scalar {0.01}          Time step discretization size (y-direction)
iplot       scalar {1}/0           Plot solution (=1)
                                                                                  .
Output      Value/(Size)           Description
-----------------------------------------------------------------------------------
fea         struct                 Problem definition struct
out         struct                 Output struct
See also
ex_heattransfer7.

Code listing

 cOptDef = { 'hmax',     0.025;
             'igrid',    0;
             'sfun',     'sflag1';
             'solver',   '';
             'tmax',     0.2;
             'tstep',    0.01;
             'iplot',    1;
             'tol',      1e-2;
             'fid',      1 };
 [got,opt] = parseopt(cOptDef,varargin{:});


% Geometry definition.
 gobj = gobj_rectangle( 0, 1, 0, opt.tmax );
 fea.geom.objects = { gobj };


% Grid generation.
 switch opt.igrid
   case 0
     fea.grid = rectgrid( round(1/opt.hmax), ceil(opt.tmax/opt.tstep), [0, 1; 0, opt.tmax] );
   case 1
     fea.grid = gridgen( fea, 'hmax', min(opt.hmax,opt.tstep), 'fid', opt.fid );
   case 2
     fea.grid = rectgrid( round(1/opt.hmax), ceil(opt.tmax/opt.tstep), [0, 1; 0, opt.tmax] );
     fea.grid = quad2tri( fea.grid, 1 );
 end


% Problem definition.
 fea.sdim  = { 'x', 'yt' };                 % Space and time coordinate names.
 fea = addphys( fea, @heattransfer );      % Add heat transfer physics mode.
 fea.phys.ht.sfun = { opt.sfun };          % Set shape function.

% Equation coefficients.
 fea.phys.ht.eqn.coef{1,end} = 1;          % Density (rho_ht).
 fea.phys.ht.eqn.coef{2,end} = 1;          % Heat capacity (cp_ht).
 fea.phys.ht.eqn.coef{3,end} = 1;          % Thermal conductivity (k_ht).
 fea.phys.ht.eqn.coef{4,end} = 0;          % Convection in x-direction (u_ht).
 fea.phys.ht.eqn.coef{5,end} = 1;          % Time convection coefficient (v_ht).
 fea.phys.ht.eqn.coef{6,end} = 0;          % Heat source term (q_ht).
 fea.phys.ht.eqn.coef{7,end} = { 25 };     % Initial temperature.

% Redefine equation.
 fea.phys.ht.eqn.seqn = '-k_ht*Tx_x + rho_ht*cp_ht*u_ht*Tx_t + rho_ht*cp_ht*v_ht*Tyt_t = q_ht';

% Boundary conditions.
 fea.phys.ht.bdr.sel = [ 1 1 2 4 ];
 fea.phys.ht.bdr.coef{1,end} = { 25 25 [] [] };
 fea.phys.ht.bdr.coef{4,end}{4}{1} = -1;

% Parse physics modes and problem struct.
 fea = parsephys(fea);
 fea = parseprob(fea);


% Compute solution.
 if( strcmp(opt.solver,'fenics') )
   fea = fenics( fea, 'fid', opt.fid );
 else
   fea.sol.u = solvestat( fea, 'fid', opt.fid );
 end

% Postprocessing.
 T_ref = refsol( fea.grid.p(1,:)', fea.grid.p(2,:)' );
 if( opt.iplot>0 )
   subplot(1,2,1)
   postplot( fea, 'surfexpr', 'T', 'surfhexpr', 'T', 'boundary', 'off' )
   view(3)
   title( 'Computed Temperature' )
   xlabel('x')
   ylabel('time')
   zlabel('T')
   axis( [0 1 0 opt.tmax 0.95*min(fea.sol.u) 1.05*max(fea.sol.u)] )
   axis tight
   grid on

   subplot(1,2,2)
   fea.vars(1).name  = 'T_ref';
   fea.vars(1).descr = 'Reference Temperature';
   fea.vars(1).data  = T_ref(:);
   postplot( fea, 'surfexpr', 'T_ref', 'surfhexpr', 'T_ref', 'boundary', 'off' )
   view(3)
   title( 'Reference Temperature' )
   xlabel('x')
   ylabel('time')
   zlabel('T_{ref}')
   axis( [0 1 0 opt.tmax 0.95*min(fea.sol.u) 1.05*max(fea.sol.u)] )
   axis tight
   grid on

   rotate3d('on')
 end


% Error checking.
 T_sol = evalexprp( 'T', fea );
 out.err  = norm( abs(T_sol-T_ref)/T_ref );
 out.pass = out.err<opt.tol;

 if( nargout==0 )
   clear fea out
 end


% -----------------------------------